We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl...We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl methacrylate jackets and, thus, LPGs could be inscribed on optical microfibers via point-by-point ultraviolet laser exposure. For a 2 mm long microfiber LPG(MLPG) inscribed on optical microfibers with a diameter of 5.4 μm, a resonant dip of 15 d B at 1377 nm was observed. This MLPG showed a high sensitivity of strain and axial force, i.e.,-1.93 pm∕με and-1.15 pm∕μN, respectively. Although the intrinsic temperature sensitivity of the LPGs is relatively low, i.e.,-12.75 pm∕°C, it can be increased to be-385.11 pm∕°C by appropriate sealing. Benefiting from the small footprint and high sensitivity, MLPGs could have potential applications in optical sensing of strain,axial force, and temperature.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61505096)
文摘We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl methacrylate jackets and, thus, LPGs could be inscribed on optical microfibers via point-by-point ultraviolet laser exposure. For a 2 mm long microfiber LPG(MLPG) inscribed on optical microfibers with a diameter of 5.4 μm, a resonant dip of 15 d B at 1377 nm was observed. This MLPG showed a high sensitivity of strain and axial force, i.e.,-1.93 pm∕με and-1.15 pm∕μN, respectively. Although the intrinsic temperature sensitivity of the LPGs is relatively low, i.e.,-12.75 pm∕°C, it can be increased to be-385.11 pm∕°C by appropriate sealing. Benefiting from the small footprint and high sensitivity, MLPGs could have potential applications in optical sensing of strain,axial force, and temperature.