A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.
Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient gratin...Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.展开更多
A new wavelength division multiplexing method for fiber Bragg grating(FBG) sensors based on spectrum profile identification is proposed. In this method, FBGs and tilted FBG(TFBG) sensors are cascaded in a single f...A new wavelength division multiplexing method for fiber Bragg grating(FBG) sensors based on spectrum profile identification is proposed. In this method, FBGs and tilted FBG(TFBG) sensors are cascaded in a single fiber in one sensing channel. The different spectrum profiles enable the cross-correlation method to demodulate the wavelength. Therefore, the different types of sensors can occupy the same central wavelength band. Using this method, the multiplexing capacity is optimized. Experiment results demonstrate the feasibility of this method and it is useful for applications where large numbers of FBGs are needed.展开更多
This paper presents the fundamental technique of phase generated carrier (PGC) and its realization on compact reconfigurable input and output (RIO) which adopts real-time and field programmable grate array (FPGA...This paper presents the fundamental technique of phase generated carrier (PGC) and its realization on compact reconfigurable input and output (RIO) which adopts real-time and field programmable grate array (FPGA) techniques. Improvement of the PGC technique is also introduced by using peak-to-peak value detection method to reduce the influence of variation of the light intensity. A four-element fibre Bragg gratings (FBG) laser sensor system is conducted in the experiment and the demodulated results demonstrate correlation coefficient as high as 0.995 with the reference signal and the dynamic range to be 120dB@63Hz.展开更多
The bonded distributed feedback(DFB) fiber laser(FL) acoustic emission sensor and the intensity response of the DFB-FL to external acoustic emissions are investigated. The dynamic sensitivity of the DFB-FL is cali...The bonded distributed feedback(DFB) fiber laser(FL) acoustic emission sensor and the intensity response of the DFB-FL to external acoustic emissions are investigated. The dynamic sensitivity of the DFB-FL is calibrated by a referenced piezoelectric receiver. In the DFB-FL we used here, the minimum detectable signal is2 × 10^(-6)m∕s at 5 kHz. Using wavelet packet technology, the collected signals are analyzed, which confirms that an intensity-modulated DFB-FL sensor can be used to detect acoustic emission signals.展开更多
基金Supported by Beijing Education Administration Foundation (00KG040)
文摘A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21003033 and 21203047)the Guangxi Provincial Natural Science Foundation,China(Grant Nos.2012GXNSFBA053012 and 2014GXNSFAA118019)the Research Foundation of Education Bureau of Guangxi Zhuang Autonomous Region,China(Grant No.ZD2014127)
文摘Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.
基金supported by the National Instrumentation Program of China(No.2013YQ030915)the National Natural Science Foundation of China(Nos.61227011,61378043,61505139,61475114,and 11004150)+3 种基金the Tianjin Natural Science Foundation(No.13JCYBJC16200)the Shenzhen Science and Technology Research Project(No.JCYJ20120831153904083)the National Basic Research Program of China(No.2010CB327802)the Soft Science Research and Development Project of the Ministry of Housing and Urban-Rural Development of China(No.2016-K4-087)
文摘A new wavelength division multiplexing method for fiber Bragg grating(FBG) sensors based on spectrum profile identification is proposed. In this method, FBGs and tilted FBG(TFBG) sensors are cascaded in a single fiber in one sensing channel. The different spectrum profiles enable the cross-correlation method to demodulate the wavelength. Therefore, the different types of sensors can occupy the same central wavelength band. Using this method, the multiplexing capacity is optimized. Experiment results demonstrate the feasibility of this method and it is useful for applications where large numbers of FBGs are needed.
基金supported by the National 863 Program under Grant No 2007AA03Z415.
文摘This paper presents the fundamental technique of phase generated carrier (PGC) and its realization on compact reconfigurable input and output (RIO) which adopts real-time and field programmable grate array (FPGA) techniques. Improvement of the PGC technique is also introduced by using peak-to-peak value detection method to reduce the influence of variation of the light intensity. A four-element fibre Bragg gratings (FBG) laser sensor system is conducted in the experiment and the demodulated results demonstrate correlation coefficient as high as 0.995 with the reference signal and the dynamic range to be 120dB@63Hz.
基金supported by the National 863 Program of China(No.2014AA093406)the Youth Innovation Promotion Association of CAS(No.2016106)+1 种基金the Project of Observation Instrument Development for Integrated Geophysical Field of China Mainland(No.Y201606)the Key Project of Hebei Educational Committee(No.BJ2016048)
文摘The bonded distributed feedback(DFB) fiber laser(FL) acoustic emission sensor and the intensity response of the DFB-FL to external acoustic emissions are investigated. The dynamic sensitivity of the DFB-FL is calibrated by a referenced piezoelectric receiver. In the DFB-FL we used here, the minimum detectable signal is2 × 10^(-6)m∕s at 5 kHz. Using wavelet packet technology, the collected signals are analyzed, which confirms that an intensity-modulated DFB-FL sensor can be used to detect acoustic emission signals.