We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slo...We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.展开更多
In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defin...In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defined technique.The thermal stabilities and optical properties of the organic–inorganic grafting PMMA core materials are analyzed. Structures and performance parameters of the waveguide gratings and self-electrode heaters are designed and simulated. The contrast of the filter is about 15 d B and the resonant wavelength can be tuned by different electric powers applied to the metal-cladding self-electrode heaters. The temperature sensitivity is 3.5 nm/℃ and the switching time is about 1 ms. The technique is very suitable for realizing the optoelectronic integrated wavelength-division-multiplexing systems.展开更多
基金Supported by the Key Grant Project of the Ministry of Education of China under Grant No 313007
文摘We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575076,61475061,and 61405070)the Fundamental Research Funds for the Central Universities,China(Grant No.JCKY-QKJC08)+1 种基金the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20130522151JH,20140519006JH,and 20160520091JH)the China Postdoctoral Science Foundation(Grant No.2015M571362)
文摘In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defined technique.The thermal stabilities and optical properties of the organic–inorganic grafting PMMA core materials are analyzed. Structures and performance parameters of the waveguide gratings and self-electrode heaters are designed and simulated. The contrast of the filter is about 15 d B and the resonant wavelength can be tuned by different electric powers applied to the metal-cladding self-electrode heaters. The temperature sensitivity is 3.5 nm/℃ and the switching time is about 1 ms. The technique is very suitable for realizing the optoelectronic integrated wavelength-division-multiplexing systems.