Bedload transport in alluvial channels has been extensively studied and different equations based on field and/or experimental data have been proposed.Prediction of bed-load transport rate using different equations re...Bedload transport in alluvial channels has been extensively studied and different equations based on field and/or experimental data have been proposed.Prediction of bed-load transport rate using different equations results in wide ranges which are not always reliable.In this study,some of the universal bedload predictors were evaluated with measured load by a Helley-Smith sampler in the Node River,a gravel bed river in the northeast part of Iran.From 19 sets of data,14 series of data were used to evaluate the bed-load transport equations.The results show that the equations presented by Van Rijn,Meyer-Peter and Mueller,and Ackers and White may adequately predict bedload transport in the range of field data.展开更多
Manning's roughness coefficient was estimated for a gravel-bed river reach using field measurements of water level and discharge, and the applicability of various methods used for estimation of the roughness coeffici...Manning's roughness coefficient was estimated for a gravel-bed river reach using field measurements of water level and discharge, and the applicability of various methods used for estimation of the roughness coefficient was evaluated. Results show that the roughness coefficient tends to decrease with increasing discharge and water depth, and over a certain range it appears to remain constant. Comparison of roughness coefficients calculated by field measurement data with those estimated by other methods shows that, although the field-measured values provide approximate roughness coefficients for relatively large discharge, there seems to be rather high uncertainty due to the difference in resultant values. For this reason, uncertainty related to the roughness coefficient was analyzed in terms of change in computed variables. On average, a 20% increase of the roughness coefficient causes a 7% increase in the water depth and an 8% decrease in velocity, but there may be about a 15% increase in the water depth and an equivalent decrease in velocity for certain cross-sections in the study reach. Finally, the validity of estimated roughness coefficient based on field measurements was examined. A 10% error in discharge measurement may lead to more than 10% uncertainty in roughness coefficient estimation, but corresponding uncertainty in computed water depth and velocity is reduced to approximately 5%. Conversely, the necessity for roughness coefficient estimation by field measurement is confirmed.展开更多
Sediment sampling and longitudinal river-bottom surveys were conducted along the thalweg on the Tanana River near the city of Nenana, Alaska, USA, to provide basic information for the engineering design requirements o...Sediment sampling and longitudinal river-bottom surveys were conducted along the thalweg on the Tanana River near the city of Nenana, Alaska, USA, to provide basic information for the engineering design requirements of hydrokinetic devices to be deployed in the area. The study reach was located at approximately 64°33'50'N and 149°04'W. The Tanana is a large glacier-fed river, with open-water flow conditions from May to October. The river presents a single channel in the study area. Granulometric analyses of sediment moving near the riverbed reveals the coexistence of three distinctive types of sediment along the study reach: 1) nearly uniform fine sand;2) bimodal distributions containing fine sand and medium gravel;and 3) medium gravel. Preliminary relationships between sediment loads and discharge were developed. Dunes with small superimposed dunes were found along the reach. The basic geometric parameters (i.e., wavelength and height) of dunes were measured, and steepness was calculated. In general, dune wavelength increased with increasing discharge. Dune wavelengths ranged from 41 to 67 m, while small-dune wavelengths ranged from 13 to 16 m. Steepness increased slightly with increasing discharge.展开更多
文摘Bedload transport in alluvial channels has been extensively studied and different equations based on field and/or experimental data have been proposed.Prediction of bed-load transport rate using different equations results in wide ranges which are not always reliable.In this study,some of the universal bedload predictors were evaluated with measured load by a Helley-Smith sampler in the Node River,a gravel bed river in the northeast part of Iran.From 19 sets of data,14 series of data were used to evaluate the bed-load transport equations.The results show that the equations presented by Van Rijn,Meyer-Peter and Mueller,and Ackers and White may adequately predict bedload transport in the range of field data.
基金supported by the 2006 Core Construction Technology Development Project(Grant No.06KSHS-B01) through the ECORIVER21 Research Center in KICTTEP of MOCT KOREA
文摘Manning's roughness coefficient was estimated for a gravel-bed river reach using field measurements of water level and discharge, and the applicability of various methods used for estimation of the roughness coefficient was evaluated. Results show that the roughness coefficient tends to decrease with increasing discharge and water depth, and over a certain range it appears to remain constant. Comparison of roughness coefficients calculated by field measurement data with those estimated by other methods shows that, although the field-measured values provide approximate roughness coefficients for relatively large discharge, there seems to be rather high uncertainty due to the difference in resultant values. For this reason, uncertainty related to the roughness coefficient was analyzed in terms of change in computed variables. On average, a 20% increase of the roughness coefficient causes a 7% increase in the water depth and an 8% decrease in velocity, but there may be about a 15% increase in the water depth and an equivalent decrease in velocity for certain cross-sections in the study reach. Finally, the validity of estimated roughness coefficient based on field measurements was examined. A 10% error in discharge measurement may lead to more than 10% uncertainty in roughness coefficient estimation, but corresponding uncertainty in computed water depth and velocity is reduced to approximately 5%. Conversely, the necessity for roughness coefficient estimation by field measurement is confirmed.
文摘Sediment sampling and longitudinal river-bottom surveys were conducted along the thalweg on the Tanana River near the city of Nenana, Alaska, USA, to provide basic information for the engineering design requirements of hydrokinetic devices to be deployed in the area. The study reach was located at approximately 64°33'50'N and 149°04'W. The Tanana is a large glacier-fed river, with open-water flow conditions from May to October. The river presents a single channel in the study area. Granulometric analyses of sediment moving near the riverbed reveals the coexistence of three distinctive types of sediment along the study reach: 1) nearly uniform fine sand;2) bimodal distributions containing fine sand and medium gravel;and 3) medium gravel. Preliminary relationships between sediment loads and discharge were developed. Dunes with small superimposed dunes were found along the reach. The basic geometric parameters (i.e., wavelength and height) of dunes were measured, and steepness was calculated. In general, dune wavelength increased with increasing discharge. Dune wavelengths ranged from 41 to 67 m, while small-dune wavelengths ranged from 13 to 16 m. Steepness increased slightly with increasing discharge.