Accurately calculating detachment capacity is the most fundamental issue when establishing a soil erosion process model.Colluvial deposits of Benggang are typical soil-gravel mixtures,whereas the understanding of the ...Accurately calculating detachment capacity is the most fundamental issue when establishing a soil erosion process model.Colluvial deposits of Benggang are typical soil-gravel mixtures,whereas the understanding of the soil detachment of colluvial deposits is limited.This work investigated the effects of the gravel contents on the soil detachment capacity of colluvial deposits and its hydrodynamic mechanism.The colluvial sample was collected in Anxi County,Fujian Province,Southeast China,and a small-sample scouring test was used.The slope steepness ranged from 18%to 84%,unit discharge ranged from 0.56×10^(-3)to 2.22×10^(-3)m^(2)s^(-1),and gravel content ranged from 0%to 70%.The results indicated that the gravel content is the primary factor that influences the detachment capacity,followed by the discharge and then the slope.The detachment capacity trend with the gravel content varied over different slopes and discharges.Stream power represents the best hydrodynamic parameter for modelling the detachment capacity of colluvial deposits and can be used to establish a fitting equation for the colluvium together with the mean weight diameter(MWD)(Nash-Sutcliffe efficiency(NSE)=0.96).As the gravel content increased,the soil erodibility parameters increased several folds,in some cases more than 10 folds,mainly because the soil shear strength decreased gradually.Meanwhile,as the gravel content increased,the gravel specific surface area increased,the obstruction of gravel to runoff increased,and the energy needed for runoff to overcome gravel obstruction increased,leading to 2-3 folds higher critical shear stress of runoff for soilgravel mixtures compared with pure soil.In summary,gravel can influence the detachment capacity by changing the soil properties,and the gravel content also affects the relationship between soil detachment capacity and the hydrodynamic parameters.These findings deepen the understanding of the influence of gravel on soil erosion and provide a basis for establishing a soil erosion process model in colluvial deposits.展开更多
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different...The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.展开更多
基金funded primarily by grants from the Natural Science Foundation of Fujian Province of China(2021J01120)the National Natural Science Foundation of China(41977071)。
文摘Accurately calculating detachment capacity is the most fundamental issue when establishing a soil erosion process model.Colluvial deposits of Benggang are typical soil-gravel mixtures,whereas the understanding of the soil detachment of colluvial deposits is limited.This work investigated the effects of the gravel contents on the soil detachment capacity of colluvial deposits and its hydrodynamic mechanism.The colluvial sample was collected in Anxi County,Fujian Province,Southeast China,and a small-sample scouring test was used.The slope steepness ranged from 18%to 84%,unit discharge ranged from 0.56×10^(-3)to 2.22×10^(-3)m^(2)s^(-1),and gravel content ranged from 0%to 70%.The results indicated that the gravel content is the primary factor that influences the detachment capacity,followed by the discharge and then the slope.The detachment capacity trend with the gravel content varied over different slopes and discharges.Stream power represents the best hydrodynamic parameter for modelling the detachment capacity of colluvial deposits and can be used to establish a fitting equation for the colluvium together with the mean weight diameter(MWD)(Nash-Sutcliffe efficiency(NSE)=0.96).As the gravel content increased,the soil erodibility parameters increased several folds,in some cases more than 10 folds,mainly because the soil shear strength decreased gradually.Meanwhile,as the gravel content increased,the gravel specific surface area increased,the obstruction of gravel to runoff increased,and the energy needed for runoff to overcome gravel obstruction increased,leading to 2-3 folds higher critical shear stress of runoff for soilgravel mixtures compared with pure soil.In summary,gravel can influence the detachment capacity by changing the soil properties,and the gravel content also affects the relationship between soil detachment capacity and the hydrodynamic parameters.These findings deepen the understanding of the influence of gravel on soil erosion and provide a basis for establishing a soil erosion process model in colluvial deposits.
基金funded by the National Natural Science Foundation of China(32360321)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2023AAC03046,2023AAC02018)the Ningxia Key Research and Development Project(2021BEG02011).
文摘The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.