Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mul...Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.展开更多
The evaluation process of traditional land productivity is relatively complex,and the evaluation indices and results cannot display visually.With the development of geographic information system science,there are more...The evaluation process of traditional land productivity is relatively complex,and the evaluation indices and results cannot display visually.With the development of geographic information system science,there are more and more studies on the GIS-based land productivity evaluation.GIS system can combine the evaluation model with information system software,realizing the visual display of all the evaluation factors.In this paper,with the development process of GIS-based management information system as references,the management information system for GIS-based gravel-mulched field productivity evaluation was designed and developed by combining with the SI model for gravel-mulched field productivity evaluation.The system was developed under VB environment,integrated with MapInfo,and the evaluation results could be shown visually in the system windows.展开更多
Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy andrain-deficient years. Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in ...Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy andrain-deficient years. Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in anexperiment with five treatments: deep-loosening tillage (DLT), traditional tillage (TT), plastic mulch (PM),straw mulch (SM) and plastic plus straw mulch (PSM). All mulch treatments were under no tillage conditions.Total storage of precipitation in soil from 0 to 300 cm was determined before sowing. Results showed thatthe new methods of tillage and mulch were the basic ways to improve water condition in dryland wheat fields.In a rainy year, PM with no tillage played a significant role in storing and conserving precipitation, while ina rain-deficient year, the role was not significant. Due to evaporation, DLT did not promote the storage ofsoil moisture. SM was the best way to store and conserve soil moisture. In SM treatment the wheat yieldsincreased by more than 20%.展开更多
In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural pra...In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.展开更多
In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investiga...In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investigation was conducted in Dongying City. Five typical cotton fields were chosen, and then the number, distri- bution density and area of residual film were measured. The results showed that the residual film was 18. 84-53. 53 kg/hm^2 in cotton fields for more than 20 years, and the differences between fields were larger. The residual density was 225-340 thousand per hectare. There were great differences among residual pieces. The proportion of residual pieces over 25 cm^2 was 94. 1%, that between 100 cm^2 and 500 cm^2 was more than 50. 0%, and that bigger than 500 cm^2 was about 21. 0%. In the Yellow River Delta cotton region, large, thin and difficult to recovery were the main characteristics of mulching plastic film residue, and it had the possibility of mi- grating to deep soil. Thus, the ecological risk of mulching plastic film residue was higher. Key words The Yellow River Delta; Cotton field; Residue of mulching plastic film; Distribution characteristic展开更多
A machine with manual operation for mulch-laying machine with a punching arrangement was developed,and its performance was assessed at three different mulch paper thicknesses(15 m,20 m and 25 m),three different disc a...A machine with manual operation for mulch-laying machine with a punching arrangement was developed,and its performance was assessed at three different mulch paper thicknesses(15 m,20 m and 25 m),three different disc angles(35 degrees,40 degrees,and 45 degrees),three different punch spacings(250 mm,500 mm,and 1000 mm),and three different forward speeds(1.3 km/h,1.5 km/h,1.7 km/h)to investigate their effects on field capacity,effective field efficiency,and punching efficiency.Utilizing randomised block design and response surface methods,the experimental plan for optimization was created.All of the independent variables’combined effects on the dependent variables were found to be statistically significant.The influence of operating speed and mulch paper thickness was found to be the most significant on the dependent variable.The effective field capacity and field efficiency increased from 0.11 ha/h to 0.19 ha/h and 72.04 percent to 89.51 percent,respectively,by increasing mulch paper thickness from 15μm to 25μm and operating speed from 1.3 km/h to 1.7 km/h,whereas punching efficiency fell from 85.18 percent to 84.40 percent.Mulch paper of 15μm and a disc angle value of 40 degrees were optimised from the independent factors that were chosen for optimal soil covering over the laid plastic mulch sheet.Punching efficiency was maximised with performance optimised at 500 mm punch spacing.Additionally,the machine operated more efficiently at 1.5 km/h.展开更多
基金Supported by Sheng Tongsheng Science and Technology Innovation Foundation of Gansu Agricultural University(GSAU-STS-1427)Open Foundation for Breeding Base of National Key Laboratory Co-founded by Gansu Province+1 种基金the Ministry of Science and Technology-Gansu Provincial Key Lab of Aridland Crop Science(GSCS-2012-14)National Natural Science Foundation of China(31560356)
文摘Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.
基金Supported by National Key Technology R&D Program(2007BAD54B01)the Scientific Research Project of Yinchuan University of Energy(2014KYZ05)
文摘The evaluation process of traditional land productivity is relatively complex,and the evaluation indices and results cannot display visually.With the development of geographic information system science,there are more and more studies on the GIS-based land productivity evaluation.GIS system can combine the evaluation model with information system software,realizing the visual display of all the evaluation factors.In this paper,with the development process of GIS-based management information system as references,the management information system for GIS-based gravel-mulched field productivity evaluation was designed and developed by combining with the SI model for gravel-mulched field productivity evaluation.The system was developed under VB environment,integrated with MapInfo,and the evaluation results could be shown visually in the system windows.
文摘Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy andrain-deficient years. Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in anexperiment with five treatments: deep-loosening tillage (DLT), traditional tillage (TT), plastic mulch (PM),straw mulch (SM) and plastic plus straw mulch (PSM). All mulch treatments were under no tillage conditions.Total storage of precipitation in soil from 0 to 300 cm was determined before sowing. Results showed thatthe new methods of tillage and mulch were the basic ways to improve water condition in dryland wheat fields.In a rainy year, PM with no tillage played a significant role in storing and conserving precipitation, while ina rain-deficient year, the role was not significant. Due to evaporation, DLT did not promote the storage ofsoil moisture. SM was the best way to store and conserve soil moisture. In SM treatment the wheat yieldsincreased by more than 20%.
基金supportedby the National Natural Science Foundation of China(41771035,42071047)。
文摘In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.
基金Supported by Cotton Innovation Team of Modern Agriculture Technology System of Shandong Province(SDAIT-07)Special Fund for Independent Innovation Achievement Transformation(2013ZHZX2A0402)~~
文摘In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investigation was conducted in Dongying City. Five typical cotton fields were chosen, and then the number, distri- bution density and area of residual film were measured. The results showed that the residual film was 18. 84-53. 53 kg/hm^2 in cotton fields for more than 20 years, and the differences between fields were larger. The residual density was 225-340 thousand per hectare. There were great differences among residual pieces. The proportion of residual pieces over 25 cm^2 was 94. 1%, that between 100 cm^2 and 500 cm^2 was more than 50. 0%, and that bigger than 500 cm^2 was about 21. 0%. In the Yellow River Delta cotton region, large, thin and difficult to recovery were the main characteristics of mulching plastic film residue, and it had the possibility of mi- grating to deep soil. Thus, the ecological risk of mulching plastic film residue was higher. Key words The Yellow River Delta; Cotton field; Residue of mulching plastic film; Distribution characteristic
文摘A machine with manual operation for mulch-laying machine with a punching arrangement was developed,and its performance was assessed at three different mulch paper thicknesses(15 m,20 m and 25 m),three different disc angles(35 degrees,40 degrees,and 45 degrees),three different punch spacings(250 mm,500 mm,and 1000 mm),and three different forward speeds(1.3 km/h,1.5 km/h,1.7 km/h)to investigate their effects on field capacity,effective field efficiency,and punching efficiency.Utilizing randomised block design and response surface methods,the experimental plan for optimization was created.All of the independent variables’combined effects on the dependent variables were found to be statistically significant.The influence of operating speed and mulch paper thickness was found to be the most significant on the dependent variable.The effective field capacity and field efficiency increased from 0.11 ha/h to 0.19 ha/h and 72.04 percent to 89.51 percent,respectively,by increasing mulch paper thickness from 15μm to 25μm and operating speed from 1.3 km/h to 1.7 km/h,whereas punching efficiency fell from 85.18 percent to 84.40 percent.Mulch paper of 15μm and a disc angle value of 40 degrees were optimised from the independent factors that were chosen for optimal soil covering over the laid plastic mulch sheet.Punching efficiency was maximised with performance optimised at 500 mm punch spacing.Additionally,the machine operated more efficiently at 1.5 km/h.