Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem...This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.展开更多
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble...A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.展开更多
The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to a...The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy.In this paper,we propose a mean-variance-based(MV)feature weighting method for classifying functional data or functional curves.In the feature extraction stage,each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis.After that,a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients.We also introduce a scaling parameter to adjust the gap between the weights of features.The new feature weighting approach can adaptively enhance noteworthy local features while mitigating the impact of confusing features.The algorithms for feature weighted K-nearest neighbor and support vector machine classifiers are both provided.Moreover,the new approach can be well integrated into existing functional data classifiers,such as the generalized functional linear model and functional linear discriminant analysis,resulting in a more accurate classification.The performance of the mean-variance-based classifiers is evaluated by simulation studies and real data.The results show that the newfeatureweighting approach significantly improves the classification accuracy for complex functional data.展开更多
Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell ...Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell migration,and cell–cell interactions.One of the fundamental characteristics of cell movement is the specific distribution of cell speed,containing valuable information that still requires comprehensive understanding.This article investigates the distribution of mean velocities along cell trajectories,with a focus on optimizing the efficiency of cell food search in the context of the entire colony.We confirm that the specific velocity distribution in the experiments corresponds to an optimal search efficiency when spatial weighting is considered.The simulation results indicate that the distribution of average velocity does not align with the optimal search efficiency when employing average spatial weighting.However,when considering the distribution of central spatial weighting,the specific velocity distribution in the experiment is shown to correspond to the optimal search efficiency.Our simulations reveal that for any given distribution of average velocity,a specific central spatial weighting can be identified among the possible central spatial weighting that aligns with the optimal search strategy.Additionally,our work presents a method for determining the spatial weights embedded in the velocity distribution of cell movement.Our results have provided new avenues for further investigation of significant topics,such as relationship between cell behavior and environmental conditions throughout their evolutionary history,and how cells achieve collective cooperation through cell-cell communication.展开更多
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r...With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT i...BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT in patients after PM resection for CRC.METHODS This study included 96 patients who underwent pulmonary metastasectomy for CRC at a single institution between April 2008 and July 2023.The primary end-point was overall survival(OS);secondary endpoints included cancer-specific survival(CSS)and disease-free survival(DFS).An inverse probability of treat-ment-weighting(IPTW)analysis was conducted to address indication bias.Sur-vival outcomes compared using Kaplan-Meier curves,log-rank test,Cox regre-ssion and confirmed by propensity score-matching(PSM).RESULTS With a median follow-up of 27.5 months(range,18.3-50.4 months),the 5-year OS,CSS and DFS were 72.0%,74.4%and 51.3%,respectively.ACT had no significant effect on OS after PM resection from CRC[original cohort:P=0.08;IPTW:P=0.15].No differences were observed for CSS(P=0.12)and DFS(P=0.68)between the ACT and non-ACT groups.Multivariate analysis showed no association of ACT with better survival,while sublobar resection(HR=0.45;95%CI:0.20-1.00,P=0.049)and longer disease-free interval(HR=0.45;95%CI:0.20-0.98,P=0.044)were associated with improved survival.CONCLUSION ACT does not improve survival after PM resection for CRC.Further well-designed randomized controlled trials are needed to determine the optimal ACT regimen and duration.展开更多
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
First,the analytical hierarchy process(AHP),which stands for the subjective weighting method,and the entropy method,which stands for the objective weighting method,are chosen to calculate the index weights of the cont...First,the analytical hierarchy process(AHP),which stands for the subjective weighting method,and the entropy method,which stands for the objective weighting method,are chosen to calculate the index weights of the contract risks of third party logistics(TPL),respectively.Then,they can determine the combination weights using the combination weighting method.Second,using the combination weights,the contract risks of TPL are evaluated through the fuzzy comprehensive evaluation method.According to the combination weights,the most important risk factor of the contract risks of TPL is choosing sub-contractors.The results are basically consistent with the facts and show that the weights determined by the combination weighting method can avoid the man-made deviations of the subjective weighting method on the one hand,and prevent results opposite to the reality brought about by the objective weighting method on the other hand.Meanwhile,the results of the fuzzy comprehensive evaluation are that the contract risks of TPL are at a high risk level.Roughly this matches real situations,and it indicates that the combination weighting method can generate the comprehensive assessment more scientifically and more reasonably as well.展开更多
Linearization of Radiative Transfer Equation (RTE) is the key step in physical retrieval of atmospheric temperature and moisture profiles from InfRared (IR) sounder observations. In this paper, the successive forms of...Linearization of Radiative Transfer Equation (RTE) is the key step in physical retrieval of atmospheric temperature and moisture profiles from InfRared (IR) sounder observations. In this paper, the successive forms of temperature and water vapor mixing ratio component weighting functions are derived by applying one term variation method to RTE with surface emissivity and solar reflectivity contained. Retrivals of temperature and water vapor mixing ratio profiles from simulated Atmospheric Infrared Sounder (AIRS) observations with surface emissivity and solar reflectivity are presented.展开更多
In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods ...In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods used widely at present, this paper tries to put forward an optimal objective selecting method of FWF. The focus of the study is on the weighting factors optimal selection in the variation retrieval single-Doppler radar wind field with the simple adjoint models. Weighting factors in the meaning of minimal variance are calculated out with the matrix theory and the finite difference method of partial differential equation. Experiments show that the result is more objective comparing with the factors obtained with the empirical method.展开更多
A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken cha...A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.展开更多
In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable imp...In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.展开更多
Power grid construction projects are distinguished by their wide variety,high investment,long payback period,and close relation to national development and human welfare.To improve the investment accuracy in such proj...Power grid construction projects are distinguished by their wide variety,high investment,long payback period,and close relation to national development and human welfare.To improve the investment accuracy in such projects and effectively prevent investment risks,this paper proposes an investment optimization decision-making method for multiple power grid construction projects under a certain investment scale.Firstly,an in-depth analysis of the characteristics and development requirements of China’s power grid projects was performed.Thereafter,the time sequence and holographic method was adopted to conduct multi-dimensional,multi-perspective risk assessment of different parts of power grid projects,and a holographic risk assessment index system was developed.Moreover,an investment decision model considering the comprehensive risk based on combination weighting was developed according to the output and input of power grid construction projects.A new combination weighting optimization method that takes into account the investment willingness of enterprises was designed to improve the current weighting evaluation methods.Finally,the validity and applicability of the proposed evaluation method were verified by case examples.展开更多
Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict ...Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.展开更多
The generic Meanshift is susceptible to interference of background pixels with the target pixels in the kernel of the reference model, which compromises the tracking performance. In this paper, we enhance the target c...The generic Meanshift is susceptible to interference of background pixels with the target pixels in the kernel of the reference model, which compromises the tracking performance. In this paper, we enhance the target color feature by attenuating the background color within the kernel through enlarging the pixel weightings which map to the pixels on the target. This way, the background pixel interference is largely suppressed in the color histogram in the course of constructing the target reference model. In addition, the proposed method also reduces the number of Meanshift iterations, which speeds up the algorithmic convergence. The two tests validate the proposed approach with improved tracking robustness on real-world video sequences.展开更多
Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the dr...Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.展开更多
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
文摘This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3900701)the Science and Technology Plan Project of the State Administration for Market Regulation of China (Grant No.2023MK178)the National Natural Science Foundation of China (Grant No.42227802)。
文摘A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.
基金the National Social Science Foundation of China(Grant No.22BTJ035).
文摘The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy.In this paper,we propose a mean-variance-based(MV)feature weighting method for classifying functional data or functional curves.In the feature extraction stage,each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis.After that,a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients.We also introduce a scaling parameter to adjust the gap between the weights of features.The new feature weighting approach can adaptively enhance noteworthy local features while mitigating the impact of confusing features.The algorithms for feature weighted K-nearest neighbor and support vector machine classifiers are both provided.Moreover,the new approach can be well integrated into existing functional data classifiers,such as the generalized functional linear model and functional linear discriminant analysis,resulting in a more accurate classification.The performance of the mean-variance-based classifiers is evaluated by simulation studies and real data.The results show that the newfeatureweighting approach significantly improves the classification accuracy for complex functional data.
基金Project supported by the National Natural Science Foundation of China(Grant No.31971183).
文摘Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell migration,and cell–cell interactions.One of the fundamental characteristics of cell movement is the specific distribution of cell speed,containing valuable information that still requires comprehensive understanding.This article investigates the distribution of mean velocities along cell trajectories,with a focus on optimizing the efficiency of cell food search in the context of the entire colony.We confirm that the specific velocity distribution in the experiments corresponds to an optimal search efficiency when spatial weighting is considered.The simulation results indicate that the distribution of average velocity does not align with the optimal search efficiency when employing average spatial weighting.However,when considering the distribution of central spatial weighting,the specific velocity distribution in the experiment is shown to correspond to the optimal search efficiency.Our simulations reveal that for any given distribution of average velocity,a specific central spatial weighting can be identified among the possible central spatial weighting that aligns with the optimal search strategy.Additionally,our work presents a method for determining the spatial weights embedded in the velocity distribution of cell movement.Our results have provided new avenues for further investigation of significant topics,such as relationship between cell behavior and environmental conditions throughout their evolutionary history,and how cells achieve collective cooperation through cell-cell communication.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51991361)the foundation of China University of Petroleum(Beijing)(Grant No.2462021YXZZ002).
文摘With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
基金Supported by the National Project for Clinical Key Specialty Development.
文摘BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT in patients after PM resection for CRC.METHODS This study included 96 patients who underwent pulmonary metastasectomy for CRC at a single institution between April 2008 and July 2023.The primary end-point was overall survival(OS);secondary endpoints included cancer-specific survival(CSS)and disease-free survival(DFS).An inverse probability of treat-ment-weighting(IPTW)analysis was conducted to address indication bias.Sur-vival outcomes compared using Kaplan-Meier curves,log-rank test,Cox regre-ssion and confirmed by propensity score-matching(PSM).RESULTS With a median follow-up of 27.5 months(range,18.3-50.4 months),the 5-year OS,CSS and DFS were 72.0%,74.4%and 51.3%,respectively.ACT had no significant effect on OS after PM resection from CRC[original cohort:P=0.08;IPTW:P=0.15].No differences were observed for CSS(P=0.12)and DFS(P=0.68)between the ACT and non-ACT groups.Multivariate analysis showed no association of ACT with better survival,while sublobar resection(HR=0.45;95%CI:0.20-1.00,P=0.049)and longer disease-free interval(HR=0.45;95%CI:0.20-0.98,P=0.044)were associated with improved survival.CONCLUSION ACT does not improve survival after PM resection for CRC.Further well-designed randomized controlled trials are needed to determine the optimal ACT regimen and duration.
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘First,the analytical hierarchy process(AHP),which stands for the subjective weighting method,and the entropy method,which stands for the objective weighting method,are chosen to calculate the index weights of the contract risks of third party logistics(TPL),respectively.Then,they can determine the combination weights using the combination weighting method.Second,using the combination weights,the contract risks of TPL are evaluated through the fuzzy comprehensive evaluation method.According to the combination weights,the most important risk factor of the contract risks of TPL is choosing sub-contractors.The results are basically consistent with the facts and show that the weights determined by the combination weighting method can avoid the man-made deviations of the subjective weighting method on the one hand,and prevent results opposite to the reality brought about by the objective weighting method on the other hand.Meanwhile,the results of the fuzzy comprehensive evaluation are that the contract risks of TPL are at a high risk level.Roughly this matches real situations,and it indicates that the combination weighting method can generate the comprehensive assessment more scientifically and more reasonably as well.
文摘Linearization of Radiative Transfer Equation (RTE) is the key step in physical retrieval of atmospheric temperature and moisture profiles from InfRared (IR) sounder observations. In this paper, the successive forms of temperature and water vapor mixing ratio component weighting functions are derived by applying one term variation method to RTE with surface emissivity and solar reflectivity contained. Retrivals of temperature and water vapor mixing ratio profiles from simulated Atmospheric Infrared Sounder (AIRS) observations with surface emissivity and solar reflectivity are presented.
文摘In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods used widely at present, this paper tries to put forward an optimal objective selecting method of FWF. The focus of the study is on the weighting factors optimal selection in the variation retrieval single-Doppler radar wind field with the simple adjoint models. Weighting factors in the meaning of minimal variance are calculated out with the matrix theory and the finite difference method of partial differential equation. Experiments show that the result is more objective comparing with the factors obtained with the empirical method.
基金supported by the National Natural Science Foundation of China (Nos. 51404013 and 51674008)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining at the China University of Mining and Technology (No. 13KF01)the Natural Science Foundation of Anhui Province (Nos. 1508085ME77 and 1508085QE89)
文摘A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.
基金supported by the Aeronautical Science Foundation of China(20150172001)
文摘In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.
基金supported by the State Grid Science and Technology Project (SGTYHT/16-JS-198)
文摘Power grid construction projects are distinguished by their wide variety,high investment,long payback period,and close relation to national development and human welfare.To improve the investment accuracy in such projects and effectively prevent investment risks,this paper proposes an investment optimization decision-making method for multiple power grid construction projects under a certain investment scale.Firstly,an in-depth analysis of the characteristics and development requirements of China’s power grid projects was performed.Thereafter,the time sequence and holographic method was adopted to conduct multi-dimensional,multi-perspective risk assessment of different parts of power grid projects,and a holographic risk assessment index system was developed.Moreover,an investment decision model considering the comprehensive risk based on combination weighting was developed according to the output and input of power grid construction projects.A new combination weighting optimization method that takes into account the investment willingness of enterprises was designed to improve the current weighting evaluation methods.Finally,the validity and applicability of the proposed evaluation method were verified by case examples.
文摘Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.
基金Supported by the Program for Technology Innovation Team of Ningbo Government (No. 2011B81002)the Ningbo University Science Research Foundation (No.xkl11075)
文摘The generic Meanshift is susceptible to interference of background pixels with the target pixels in the kernel of the reference model, which compromises the tracking performance. In this paper, we enhance the target color feature by attenuating the background color within the kernel through enlarging the pixel weightings which map to the pixels on the target. This way, the background pixel interference is largely suppressed in the color histogram in the course of constructing the target reference model. In addition, the proposed method also reduces the number of Meanshift iterations, which speeds up the algorithmic convergence. The two tests validate the proposed approach with improved tracking robustness on real-world video sequences.
文摘Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.