The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is show...The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is shown that the quantum entropy has both the linearly and the logarithmically divergent terms. For electromagnetic field, these terms depend on the characteristic of the black hole; while for gravitational field, they depend not only on the characteristic of the black hole but also on the spin of the fields.展开更多
In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carri...In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law.展开更多
The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form o...The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes.展开更多
Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position a...Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.展开更多
The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimension...The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry(SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 1/2 times higher than that measured by the three-dimensional gravity gradient V ij.Secondly,the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation,respectively.The study results show that when the measurement error of the gravity gradient is 3×10 12 /s 2,the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%-40% on average compared with that using the radial gravity gradient V zz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 13 /s 2-10 15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.展开更多
Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principl...Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.展开更多
The precision of Earth's gravitational field from GRACE up to degree and order 120 was studied for different inter-satellite ranges using the improved energy conservation principle. Our simulated result shows that: ...The precision of Earth's gravitational field from GRACE up to degree and order 120 was studied for different inter-satellite ranges using the improved energy conservation principle. Our simulated result shows that: For long wavelength (L≤20) at degree 20, the cumulative geoid-height error gradually decreased with increasing range, from 0. 052 cm for 110 km to 1. 156 times and 1. 209 times as large for 220 km and 330 kin, respectively. For medium-wavelength ( 100 ≤ L ≤ 120) at degree 120, the cumulative geoid-height error de- creased from 13. 052 cm for 110 km, to 1. 327 times and 1. 970 times as large for the ranges of 220 km and 330 km, respectively; By adopting an optimal range of 220 ± 50 km, we can suppress considerably the loss of precision in the measurement of the Earth' s long-wavelength and medium-wavelength gravitational field.展开更多
Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the...Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase,and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently.展开更多
Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, ...Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, which describes the characteristics of pulsation of the Earth and the structures of spherical layers of its interior, thus providing a theoretical basis for establishing the idea of mantle pulsation.展开更多
The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM) are investigated. We found that the magnetic...The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM) are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.展开更多
The study by the author of magnetic scattering neutrons in the structures of ferrimagnets, as well as his experiments with the separation of magnetic charges in dipole pairs ±g in magnetic field, showed that fund...The study by the author of magnetic scattering neutrons in the structures of ferrimagnets, as well as his experiments with the separation of magnetic charges in dipole pairs ±g in magnetic field, showed that fundamental magnetic particles (magnetic charges) are real structural components of atoms and substance. It is the magnetic poles, and not the moving electric charges are the direct sources of all magnetic fields and magnetic manifestations in Nature. Basic reasons of ignoring the magnetic fundamental particles by world physical theory, for almost 150 years, are the ultra-harsh confinement of these particles in substance which radically is different from the confinement electrons, as well as the vicious concept of the electric magnetism Maxwell. Rotating magnetic dipoles in conductors which are untwisted by electric current, are direct sources of the vortex magnetic field rot<em><strong>H</strong></em>. One should also expect the formation of a vortex electric field rot<em><strong>E </strong></em>forming by rotating electric dipoles which are untwisted by the current of magnetic charges. This article provides an experimental answer to the question: what field is formed around a conductor if joint direct currents of electric<em> <strong style="white-space:normal;"><em>J</em></strong></em><sub>e</sub> and magnetic<strong><em> J</em></strong><sub>g</sub> charges are passed through it? The author’s experiments have shown that in this case the vortex electromagnetic current is realized which manifests itself as the vortex electromagnetic (gravitational) field. It is possible to implement such a process, according to the results of the author’s research, exclusively in superconductors. The vector character of the gravitational field is in many respects similar to the vortex magnetic field which makes it possible to introduce such it states as paragravitation and ferrogravitation into representations. To create joint currents of electric and magnetic charges, the author used the inertial forces of these particles under conditions of acceleration and deceleration of the rotational motion of the closed lead superconductor. The result of this experiment was the gravitational, as it turned out later, the ferrogravitational field, which was detected by effect repulsion of trial cargos from the coil with a superconducting winding at the stage of its untwist. The latter process is defined by the author as an effect of the gravitational (ferrogravitational) levitation. The values of ferrogravitational (levitational) forces noted in this experiment were: 120 mg for a tungsten trial cargo and 50 and 25 mg for a lead cargo with an error of ±15 mg. The values of ferrogravitational (levitational) forces noted in this experiment are: 120 mg for from tungsten trial cargo and 50 and 25 mg for a cargo from lead, with an error of ±15 mg. The “anomaly” noted by the author in this study was in the absence of any absence of a gravitational effect on stage a braking of the coil. Probable cause of the noted “anomaly” is discussed in the Discussion of Results chapter.展开更多
For a special use a new modelling method of evaluating external disturbing potential is presented in this paper.Being different from classical methods in physical geodesy this method is grounded upon the theory of uni...For a special use a new modelling method of evaluating external disturbing potential is presented in this paper.Being different from classical methods in physical geodesy this method is grounded upon the theory of unified representation of gravitational field.The models created in this way are particularly satisfactory for a high_speed computation of gravitational field in low altitude because they take account of topographic effects and have their kernel functions with simple structure and weak singularity.展开更多
The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What...The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.展开更多
For further research on the gravity mechanism of the routing protocol in complex networks, we introduce the concept of routing awareness depth, which is represented by p. On this basis, we define the calculation formu...For further research on the gravity mechanism of the routing protocol in complex networks, we introduce the concept of routing awareness depth, which is represented by p. On this basis, we define the calculation formula of the gravity of the transmission route for the packet, and propose a routing strategy based on the gravitational field of the node and the routing awareness depth. In order to characterize the efficiency of the method, we introduce an order parameter, η, to measure the throughput of the network by the critical value of phase transition from free flow to congestion, and use the node betweenness centrality, B, to test the transmission efficiency of the network and congestion distribution. We simulate the network transmission performance under different values of the routing awareness depth, ρ. Simulation results show that if the value of the routing awareness depth p is too small, then the gravity of the route is composed of the attraction of very few nodes on the route, which cannot improve the capacity of the network effectively. If the value of the routing awareness depth ρ is greater than the network's average distance (l), then the capacity of the network may be improved greatly and no longer change with the sustainable increment of routing awareness depth p, and the routing strategy performance enters into a constant state. Moreover, whatever the value of the routing awareness depth p, our algorithm always effectively balances the distribution of the betweenness centrality and realizes equal distribution of the network load.展开更多
Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT = 2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the qua...Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT = 2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner- Nordstrom type metric is obtained.展开更多
In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculate the possible curvature excitation (order k^4) of gravitational field, which is giv...In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculate the possible curvature excitation (order k^4) of gravitational field, which is given by the first term of quantum Wilson loop (w) through two-point Green's function of the connection. At the same time using the tree diagram propagators of gravitons, the lowest order (k^4) correction to (w) is also calculated through the graviton self-energy in the term. Under the accuracy condition up to order k^4, we have obtained a complete expression of the excitation contributed from the leading term (w^(2))of (w).展开更多
The behavior of liquids undergoing phase transition in the gravitational field is studied by considering the generalized Van der Waals equation. Considering the two simple models for liquid-vapor boundary of a pure cl...The behavior of liquids undergoing phase transition in the gravitational field is studied by considering the generalized Van der Waals equation. Considering the two simple models for liquid-vapor boundary of a pure classical fluid, the generalized Van der Waals equation shows how the three critical parameters (critical temperature, critical volume and critical pressure), suffice to describe the reduced state parameters (reduced temperature, reduced volume and reduced pressure), the concentration profile and the liquid-vapor boundary position, which can be used to observe transition phenomenon. This model shows how the form of the equation can influence the vertical phase separation induced by the stationary gravitational field, and on the gas condensation effects.展开更多
The Bach equations are a version of higher-order gravitational field equations, exactly they are of fourth-order. In 4-dimensions the Bach-Einstein gravitational field equations are treated here as a perturbation of E...The Bach equations are a version of higher-order gravitational field equations, exactly they are of fourth-order. In 4-dimensions the Bach-Einstein gravitational field equations are treated here as a perturbation of Einstein’s gravity. An approximate inversion formula is derived which admits a comparison of the two field theories. An application to these theories is given where the gravitational Lagrangian is expressed linearly in terms of R, R<sup>2</sup>, |Ric|<sup>2</sup>, where the Ricci tensor Ric = R<sub>αβ</sub>dx<sup>α</sup>dx<sup>β</sup> is inserted in some formulas which are of geometrical or physical importance, such as;Raychaudhuri equation and Tolman’s formula.展开更多
In this paper, we review historical Maxwell's equation for gravity and recent studies on the lack of curvature of linear dipole gravitational waves. The extended Newton's gravity necessarily has the continuity...In this paper, we review historical Maxwell's equation for gravity and recent studies on the lack of curvature of linear dipole gravitational waves. The extended Newton's gravity necessarily has the continuity equation for the conservation of mass, and with the Gauss' equation associated to gravitational time depending field <strong>R</strong>, bring about a new field <strong>W</strong> which resembles the magnetic field in Electrodynamics. Although this field has not been found yet, its existence comes from a strong mathematical statement, and it is shown that linear dipole gravitational waves have their origin in extended Newton theory of gravity. This is a direct mathematical consequence of Gauss' law and the continuity equation for the density of mass and current, and as a direct result of this, any accelerated mass will emit mainly dipole gravitational radiation. Then, one concludes that dipole gravitational waves can have its origin on the extended Newton's gravity equations.展开更多
Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is i...Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is introduced. Using both foregoing gravitational wave generator and gravitational wave detector (i.e. laser interferometric gravitational wave antenna), the gravitational communication system can be possible. This paper introduces its content presented at 20th Annual Lecture (1989) and the research trends in the latest gravitational wave.展开更多
基金Funded by the Natural Science Foundation of China (Grant No10375051)
文摘The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is shown that the quantum entropy has both the linearly and the logarithmically divergent terms. For electromagnetic field, these terms depend on the characteristic of the black hole; while for gravitational field, they depend not only on the characteristic of the black hole but also on the spin of the fields.
文摘In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law.
文摘The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes.
基金supported by the National Natural Science Foundation of China (Grant No 40674038)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant Nos KZCX2-YW-143 and KZCX2-YW-202)+1 种基金the National High Technology Research and Development Program of China (863) (Grant Nos 2009AA12Z138 and 2006AA09Z153)the Grant-in-Aid for Scientific Research of Japan (Grant No B19340129)
文摘Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.
基金Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences for Distinguished Young Scholars (Grant No. KZCX2-EW-QN114)the National Natural Science Foundation of China for Young Scholars (GrantNos. 41004006,41131067,and 11173049)+3 种基金the Merit-Based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars (Grant No. 2011)the Open Research Fund Programof the Key Laboratory of Computational Geodynamics of the Chinese Academy of Sciences (Grant No. 2011-04)the Frontier Field Program of Knowledge Innovation of Institute of Geodesy and Geophysics of the Chinese Academy of Sciencesthe Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Grant No. PLN1113)
文摘The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry(SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 1/2 times higher than that measured by the three-dimensional gravity gradient V ij.Secondly,the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation,respectively.The study results show that when the measurement error of the gravity gradient is 3×10 12 /s 2,the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%-40% on average compared with that using the radial gravity gradient V zz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 13 /s 2-10 15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.
基金Project supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar (Grant No. KZCX2-EW-QN114)the National Natural Science Foundation of China for Young Scholar (Grant Nos. 41004006, 41131067, 11173049, and 41202094)+5 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(Grant No. 2011)the Open Research Fund Program of the Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences (Grant No. 2011-04)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (Grant No. 11-01-02)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of National Administration of Surveying, Mapping and Geoinformation of China(Grant No. 201322)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Grant No. PLN1113)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Grant No. PRP/open-1206)
文摘Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar(KZCX2-EW-QN114)the National Natural Science Foundation of China(41004006,41131067,11173049)+5 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(2011)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of State Bureau of Surveying and Mapping(201031)the Open Research Fund Program of the Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences(2011-04)the Frontier Field Program of Knowledge Innovation of Institute of Geodesy and Geophysics of Chinese Academy of Sciencesthe Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLN1113)the Hubei Province Key Laboratory of Refractories and Ceramics Ministry-Province jointly-Constructed Cultivation Base for State key Laboratory(G201009)
文摘The precision of Earth's gravitational field from GRACE up to degree and order 120 was studied for different inter-satellite ranges using the improved energy conservation principle. Our simulated result shows that: For long wavelength (L≤20) at degree 20, the cumulative geoid-height error gradually decreased with increasing range, from 0. 052 cm for 110 km to 1. 156 times and 1. 209 times as large for 220 km and 330 kin, respectively. For medium-wavelength ( 100 ≤ L ≤ 120) at degree 120, the cumulative geoid-height error de- creased from 13. 052 cm for 110 km, to 1. 327 times and 1. 970 times as large for the ranges of 220 km and 330 km, respectively; By adopting an optimal range of 220 ± 50 km, we can suppress considerably the loss of precision in the measurement of the Earth' s long-wavelength and medium-wavelength gravitational field.
基金Project supported by the Technology and Development Research Project of China Railway Corporation(Grant No.2012X007-D)the Key Program of Technology and Development Research Foundation of China Railway Corporation(Grant No.2012X003-A)
文摘Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase,and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently.
文摘Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, which describes the characteristics of pulsation of the Earth and the structures of spherical layers of its interior, thus providing a theoretical basis for establishing the idea of mantle pulsation.
文摘The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM) are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.
文摘The study by the author of magnetic scattering neutrons in the structures of ferrimagnets, as well as his experiments with the separation of magnetic charges in dipole pairs ±g in magnetic field, showed that fundamental magnetic particles (magnetic charges) are real structural components of atoms and substance. It is the magnetic poles, and not the moving electric charges are the direct sources of all magnetic fields and magnetic manifestations in Nature. Basic reasons of ignoring the magnetic fundamental particles by world physical theory, for almost 150 years, are the ultra-harsh confinement of these particles in substance which radically is different from the confinement electrons, as well as the vicious concept of the electric magnetism Maxwell. Rotating magnetic dipoles in conductors which are untwisted by electric current, are direct sources of the vortex magnetic field rot<em><strong>H</strong></em>. One should also expect the formation of a vortex electric field rot<em><strong>E </strong></em>forming by rotating electric dipoles which are untwisted by the current of magnetic charges. This article provides an experimental answer to the question: what field is formed around a conductor if joint direct currents of electric<em> <strong style="white-space:normal;"><em>J</em></strong></em><sub>e</sub> and magnetic<strong><em> J</em></strong><sub>g</sub> charges are passed through it? The author’s experiments have shown that in this case the vortex electromagnetic current is realized which manifests itself as the vortex electromagnetic (gravitational) field. It is possible to implement such a process, according to the results of the author’s research, exclusively in superconductors. The vector character of the gravitational field is in many respects similar to the vortex magnetic field which makes it possible to introduce such it states as paragravitation and ferrogravitation into representations. To create joint currents of electric and magnetic charges, the author used the inertial forces of these particles under conditions of acceleration and deceleration of the rotational motion of the closed lead superconductor. The result of this experiment was the gravitational, as it turned out later, the ferrogravitational field, which was detected by effect repulsion of trial cargos from the coil with a superconducting winding at the stage of its untwist. The latter process is defined by the author as an effect of the gravitational (ferrogravitational) levitation. The values of ferrogravitational (levitational) forces noted in this experiment were: 120 mg for a tungsten trial cargo and 50 and 25 mg for a lead cargo with an error of ±15 mg. The values of ferrogravitational (levitational) forces noted in this experiment are: 120 mg for from tungsten trial cargo and 50 and 25 mg for a cargo from lead, with an error of ±15 mg. The “anomaly” noted by the author in this study was in the absence of any absence of a gravitational effect on stage a braking of the coil. Probable cause of the noted “anomaly” is discussed in the Discussion of Results chapter.
文摘For a special use a new modelling method of evaluating external disturbing potential is presented in this paper.Being different from classical methods in physical geodesy this method is grounded upon the theory of unified representation of gravitational field.The models created in this way are particularly satisfactory for a high_speed computation of gravitational field in low altitude because they take account of topographic effects and have their kernel functions with simple structure and weak singularity.
基金supported by the National Natural Science Foundation of China(41304022)the National 973 Foundation(61322201,2013CB733303)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100184110019)the 2013 Cultivation Project of Excellent Doctorate Dissertation of Southwest Jiaotong University+4 种基金the 2013 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Natural Science Research Program of Chongqing Educational Committee,China (Grant No. KJ120528)China Postdoctoral Science Foundation (Grant No. 2011M501412)the National Natural Science Foundation of China (Grant No. 41201475/D0108)the Fundamental Research Funds for the Central Universities,China (Grant No. A0920502051208-16)
文摘For further research on the gravity mechanism of the routing protocol in complex networks, we introduce the concept of routing awareness depth, which is represented by p. On this basis, we define the calculation formula of the gravity of the transmission route for the packet, and propose a routing strategy based on the gravitational field of the node and the routing awareness depth. In order to characterize the efficiency of the method, we introduce an order parameter, η, to measure the throughput of the network by the critical value of phase transition from free flow to congestion, and use the node betweenness centrality, B, to test the transmission efficiency of the network and congestion distribution. We simulate the network transmission performance under different values of the routing awareness depth, ρ. Simulation results show that if the value of the routing awareness depth p is too small, then the gravity of the route is composed of the attraction of very few nodes on the route, which cannot improve the capacity of the network effectively. If the value of the routing awareness depth ρ is greater than the network's average distance (l), then the capacity of the network may be improved greatly and no longer change with the sustainable increment of routing awareness depth p, and the routing strategy performance enters into a constant state. Moreover, whatever the value of the routing awareness depth p, our algorithm always effectively balances the distribution of the betweenness centrality and realizes equal distribution of the network load.
文摘Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT = 2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner- Nordstrom type metric is obtained.
基金The project partially supported by Fund of the Education Department of Hubei Province of China under Grant No. D200534001
文摘In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculate the possible curvature excitation (order k^4) of gravitational field, which is given by the first term of quantum Wilson loop (w) through two-point Green's function of the connection. At the same time using the tree diagram propagators of gravitons, the lowest order (k^4) correction to (w) is also calculated through the graviton self-energy in the term. Under the accuracy condition up to order k^4, we have obtained a complete expression of the excitation contributed from the leading term (w^(2))of (w).
文摘The behavior of liquids undergoing phase transition in the gravitational field is studied by considering the generalized Van der Waals equation. Considering the two simple models for liquid-vapor boundary of a pure classical fluid, the generalized Van der Waals equation shows how the three critical parameters (critical temperature, critical volume and critical pressure), suffice to describe the reduced state parameters (reduced temperature, reduced volume and reduced pressure), the concentration profile and the liquid-vapor boundary position, which can be used to observe transition phenomenon. This model shows how the form of the equation can influence the vertical phase separation induced by the stationary gravitational field, and on the gas condensation effects.
文摘The Bach equations are a version of higher-order gravitational field equations, exactly they are of fourth-order. In 4-dimensions the Bach-Einstein gravitational field equations are treated here as a perturbation of Einstein’s gravity. An approximate inversion formula is derived which admits a comparison of the two field theories. An application to these theories is given where the gravitational Lagrangian is expressed linearly in terms of R, R<sup>2</sup>, |Ric|<sup>2</sup>, where the Ricci tensor Ric = R<sub>αβ</sub>dx<sup>α</sup>dx<sup>β</sup> is inserted in some formulas which are of geometrical or physical importance, such as;Raychaudhuri equation and Tolman’s formula.
文摘In this paper, we review historical Maxwell's equation for gravity and recent studies on the lack of curvature of linear dipole gravitational waves. The extended Newton's gravity necessarily has the continuity equation for the conservation of mass, and with the Gauss' equation associated to gravitational time depending field <strong>R</strong>, bring about a new field <strong>W</strong> which resembles the magnetic field in Electrodynamics. Although this field has not been found yet, its existence comes from a strong mathematical statement, and it is shown that linear dipole gravitational waves have their origin in extended Newton theory of gravity. This is a direct mathematical consequence of Gauss' law and the continuity equation for the density of mass and current, and as a direct result of this, any accelerated mass will emit mainly dipole gravitational radiation. Then, one concludes that dipole gravitational waves can have its origin on the extended Newton's gravity equations.
文摘Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is introduced. Using both foregoing gravitational wave generator and gravitational wave detector (i.e. laser interferometric gravitational wave antenna), the gravitational communication system can be possible. This paper introduces its content presented at 20th Annual Lecture (1989) and the research trends in the latest gravitational wave.