期刊文献+
共找到215篇文章
< 1 2 11 >
每页显示 20 50 100
Decoupling Algorithms for the Gravitational Wave Spacecraft
1
作者 XueWang Weizhou Zhu +4 位作者 Zhao Cui Xingguang Qian Jinke Yang Jianjun Jia Yikun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期325-337,共13页
The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis... The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise. 展开更多
关键词 gravitational waves spacecraft laser acquisition decoupling algorithms dynamical model optical axis control
下载PDF
Fault diagnosis method of link control system for gravitational wave detection
2
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
下载PDF
Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector
3
作者 陈奕康 朱宗宏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期222-228,共7页
Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merg... Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions. 展开更多
关键词 neutron star mergers gravitational waves
下载PDF
Gravitational Waves Background, as Well as Some UFO, FRB and Supernova Flares, Are Due to Compressibility of the Spacetime (CoST)
4
作者 Evgeny A. Novikov 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期67-70,共4页
The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
关键词 gravitational wave Background Quantum Modification of the General Relativity Compressibility of the Spacetime (CoST)
下载PDF
Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data ReleaseⅠ 被引量:18
5
作者 Heng Xu Siyuan Chen +24 位作者 Yanjun Guo Jinchen Jiang Bojun Wang Jiangwei Xu Zihan Xue RNicolas Caballero Jianping Yuan Yonghua Xu Jingbo Wang Longfei Hao Jingtao Luo Kejia Lee Jinlin Han Peng Jiang Zhiqiang Shen Min Wang Na Wang Renxin Xu Xiangping Wu Richard Manchester Lei Qian Xin Guan Menglin Huang Chun Sun Yan Zhu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第7期300-311,共12页
Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the... Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs.The Chinese Pulsar Timing Array(CPTA)is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes.This short article serves as a“table of contents”for a forthcoming series of papers related to the CPTA Data Release 1(CPTA DR1)which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope.Here,after summarizing the time span and accuracy of CPTA DR1,we report the key results of our statistical inference finding a correlated signal with amplitude logA_(c)=-14.4_(-2.8)^(+1.0)for spectral index in the range ofα∈[-1.8,1.5]assuming a GW background(GWB)induced quadrupolar correlation.The search for the Hellings–Downs(HD)correlation curve is also presented,where some evidence for the HD correlation has been found that a 4.6σstatistical significance is achieved using the discrete frequency method around the frequency of 14 n Hz.We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the n Hz GWB,which could verify the current results. 展开更多
关键词 (stars:)pulsars:general gravitational waves methods:statistical methods:observational
下载PDF
Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection 被引量:1
6
作者 陶雅正 金洪波 吴岳良 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期20-26,共7页
In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error ... In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter. 展开更多
关键词 laser optical systems space mission gravitational wave
下载PDF
Application of Newtonian approximate model to LIGO gravitational wave data processing
7
作者 吴洁 李瑾 蒋青权 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期192-199,共8页
With the observation of a series of ground-based laser interferometer gravitational wave(GW)detectors such as LIGO and Virgo,nearly 100 GW events have been detected successively.At present,all detected GW events are g... With the observation of a series of ground-based laser interferometer gravitational wave(GW)detectors such as LIGO and Virgo,nearly 100 GW events have been detected successively.At present,all detected GW events are generated by the mergers of compact binary systems and are identified through the data processing of matched filtering.Based on matched filtering,we use the GW waveform of the Newtonian approximate(NA)model constructed by linearized theory to match the events detected by LIGO and injections to determine the coalescence time and utilize the frequency curve for data fitting to estimate the parameters of the chirp masses of binary black holes(BBHs).The average chirp mass of our results is 22.05_(-6.31)^(+6.31)M_(⊙),which is very close to 23.80_(-3.52)^(+4.83)M_(⊙)provided by GWOSC.In the process,we can analyze LIGO GW events and estimate the chirp masses of the BBHs.This work presents the feasibility and accuracy of the low-order approximate model and data fitting in the application of GW data processing.It is beneficial for further data processing and has certain research value for the preliminary application of GW data. 展开更多
关键词 gravitational waves black holes matched filtering data fitting
下载PDF
Gravitational wave echoes from strange quark stars in the equation of state with density-dependent quark masses
8
作者 Jian‑Feng Xu Lei Cui +2 位作者 Zhen‑Yan Lu Cheng‑Jun Xia Guang‑Xiong Peng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期112-119,共8页
According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obta... According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obtained either by a simple bag model with artificially assigned sound velocity or by employing interacting strange quark matter(SQM)depicted by simple reparameterization and rescaling.In this study,we investigate GW echoes with EOSs for SQM in the framework of the equivparticle model with density-dependent quark masses and pairing effects.We conclude that strange quark stars(SQSs)can be sufficiently compact to possess a photon sphere capable of generating GW echoes with frequencies in the range of approximately 20 kHz.However,SQSs cannot account for the observed 72 Hz signal in GW170817 event.Furthermore,we determined that quark-pairing effects play a crucial role in enabling SQSs to satisfy the necessary conditions for producing these types of echoes. 展开更多
关键词 Strange quark star gravitational wave echoes Color-flavour-locked phase Strange quark matter
下载PDF
Multifrequency Gravitational Wave Background from Continuous Sources
9
作者 C. Sivaram Arun Kenath 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第2期698-714,共17页
Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few... Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few hundred hertz to around a kilohertz to which LIGO type instruments are sensitive. LISA would be sensitive to much lower range of frequencies from SMBH mergers. Apart from these cataclysmic burst events, there are innumerable sources of radiation which are continuously emitting gravitational waves of all frequencies. These include a whole mass range of compact binary and isolated compact objects as well as close planetary stellar entities. In this work, quantitative estimates are made of the gravitational wave background produced in typical frequency ranges from such sources emitting over a Hubble time and the fluctuations in the <i>h</i> values measured in the usual devices. Also estimates are made of the high frequency thermal background gravitational radiation from hot stellar interiors and newly formed compact objects. 展开更多
关键词 gravitational waves Neutron Star Mergers Black Hole Mergers Primordial Black Holes Continuous gravitational waves Thermal gravitational waves Detection of gravitational waves
下载PDF
Was LIGO’s Gravitational Wave Detection a False Alarm? 被引量:5
10
作者 Policarpo Yōshin Ulianov Xiaochun Mei Ping Yu 《Journal of Modern Physics》 2016年第14期1845-1865,共21页
This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the G... This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the GW150914 event, the signals from the collision of two black holes are very similar to the 32.5 Hz noise sources observed in both of LIGO’s detectors. It also points out that these 32.5 Hz noise sources are powered by a 30 Hz sub harmonic, coming from the 60 Hz power system. In the GW1226 event, the same analysis points out that the NR template is very similar to the 120 Hz noise source. Therefore, the signals recorded in these events were probably generated by some small changes with the 60 Hz frequency in the US power grid. This can be caused, for example, by a power variation in the DC link, which can appear in both detectors in the same 10 ms time window. As this kind of power grid occurrence did not change the voltage levels, it may have gone unnoticed by LIGO’s electrical power supply’s monitoring system. 展开更多
关键词 gravitational waves Detection LIGO Laser Interferometer gravitational wave Observatory
下载PDF
The Latest Study of Gravitational Wave Communication System
11
作者 Yoshinari Minami 《Journal of Earth Science and Engineering》 2016年第3期164-176,共13页
Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is i... Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is introduced. Using both foregoing gravitational wave generator and gravitational wave detector (i.e. laser interferometric gravitational wave antenna), the gravitational communication system can be possible. This paper introduces its content presented at 20th Annual Lecture (1989) and the research trends in the latest gravitational wave. 展开更多
关键词 gravitational wave SPACE-TIME CONTINUUM space strain strain wave CURVATURE gravitational wave communication.magnetic field.
下载PDF
Application of High-Frequency Gravitational Waves to the Cataclysmic Event of Our First Encounter with Intelligent Extraterrestrial Beings
12
作者 Robert M. L. Baker Bonnie Sue Baker 《Journal of Applied Mathematics and Physics》 2016年第1期110-129,共20页
Three advances are proposed as a pathway to the cataclysmic event of our first encounter with intelligent extraterrestrial beings. First, discovery of very large numbers of extraterrestrial planets, “exoplanets” (po... Three advances are proposed as a pathway to the cataclysmic event of our first encounter with intelligent extraterrestrial beings. First, discovery of very large numbers of extraterrestrial planets, “exoplanets” (possibly as many as10<sup>23</sup> in our Universe);second, introduction of electronic components into the human body evolving into a cybernetic and biological “cyborg,” a model for an extraterrestrial being Cyborgs might allow advanced civilizations to endure hundreds of thousands of years. Third, the recent development of high-frequency gravitational wave (HFGW) detectors, the communication means of choice for an advanced cyborg civilization since they are not easily absorbed like electromagnetic radiation. Six HFGW detectors are presented for application to our first encounter with intelligent extraterrestrial beings. Numerical estimates are made for the failure of extraterrestrial civilizations such that no two exist at the same time (Fermi’s Paradox). It is concluded that there might remain at least ≈1.48 × 10<sup>8</sup> Worlds intercommunicating with HFGWs at any one time in any one region of our Universe. The predicted form of extraterrestrial beings is by means of animaginary, but based upon comprehensively documented and detailed projection of the evolution of “Earthling” homosapiens, to become “cyborgs.” It is proposed that such long-living cyborg forms of intelligent beings would be encountered by us. The first cataclysmic encounter with them is expected to be interception of their interstellar communications. The predicted frequency of intercepted messages under one set of assumptions is at least 1500 per day. After decoding the intercepted messages, keys may be found to improve vastly the present and future quality of life for us earthlings. Advanced beings might utilize direct brain-to-brain communication and it is concluded that research into brain-to-brain communication and HFGW detection are encouraged. 展开更多
关键词 High-Frequency gravitational waves Search for Extraterrestrial Intelligence gravitational waves EXOPLANETS CYBORG
下载PDF
The Three-Arm Michelson-Fabry-Perot Detector for Gravitational Waves 被引量:1
13
作者 黄超光 李永贵 朱宁 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期24-28,共5页
A three-arm Michelson-Fabry-Perot detector for gravitational waves is designed. It consists of three Michelson Fabry-Perot interferometers, one for each pair of arms. The new detector can be used to confirm whether th... A three-arm Michelson-Fabry-Perot detector for gravitational waves is designed. It consists of three Michelson Fabry-Perot interferometers, one for each pair of arms. The new detector can be used to confirm whether the gravitational waves are in general relativity polarization states and to set the strong constraints on non-GR gravitational wave polarization states. By the new detectors, the angular resolution of sources can be improved significantly. With the new detector, it is easier to search for and confirm a gravitational wave signal in the observation data. 展开更多
关键词 of on for in The Three-Arm Michelson-Fabry-Perot Detector for gravitational waves is
下载PDF
The mini-GWAC optical follow-up of gravitational wave alerts – results from the O2 campaign and prospects for the upcoming O3 run 被引量:1
14
作者 Damien Turpin Chao Wu +33 位作者 Xu-Hui Han Li-Ping Xin Sarah Antier Nicolas Leroy Li Cao Hong-Bo Cai Bertrand Cordier Jin-Song Deng Wen-Long Dong Qi-Chen Feng Lei Huang Lei Jia Alain Klotz Cyril Lachaud Hua-Li Li En-Wei Liang Shun-Fang Liu Xiao-Meng Lu Xian-Min Meng Yu-Lei Qiu Hui-Juan Wang Jing Wang Shen Wang Xiang-Gao Wang Jian-Yan Wei Bo-Bing Wu Yu-Jie Xiao Da-Wei Xu Yang Xu Yuan-Gui Yang Pin-Pin Zhang Ruo-Song Zhang Shuang-Nan Zhang Ya-Tong ZhengandSi-Cheng Zou 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第1期107-123,共17页
The second(O2)observational campaign of gravitational waves(GWs)organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of GW signals from merger systems involving black holes... The second(O2)observational campaign of gravitational waves(GWs)organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of GW signals from merger systems involving black holes or neutrons stars.During O2,14 GW alerts were sent to the astronomical community with sky regions mostly covering over hundreds of square degrees.Among them,six were finally confirmed as real astrophysical events.Since 2013,a new set of ground-based robotic telescopes called Ground-based Wide Angle Camera system(GWAC)project and its pathfinder mini-GWAC has been developed to contribute to the various challenges of multi-messenger and time domain astronomy.The GWAC system is built up in the framework of the ground-segment system of the SVOM mission that will be devoted to the study of the multi-wavelength transient sky in the next decade.During O2,only the mini-GWAC telescope network was fully operational.Due to the wide field of view and fast automatic follow-up capabilities of the mini-GWAC telescopes,they were adept to efficiently cover the sky localization areas of GW event candidates.In this paper,we present the mini-GWAC pipeline we have set up to respond to GW alerts and we report our optical follow-up observations of eight GW alerts detected during the O2 run.Our observations provided the largest coverage of the GW localization areas with a short latency made by any optical facility.We found tens of optical transient candidates in our images,but none of those could be securely associated with any confirmed black hole-black hole merger event.Based on this first experience and the near future technical improvements of our network system,we will be more competitive in detecting the optical counterparts from some GW events that will be identified during the upcoming O3 run,especially those emerging from binary neutron star mergers. 展开更多
关键词 gravitational waves methods:data analysis methods:observational (stars:)gammaray burst:general
下载PDF
Past,present and future of the Resonant-Mass gravitational wave detectors 被引量:2
15
作者 Odylio Denys Aguiar 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2011年第1期1-42,共42页
Resonant-mass gravitational wave detectors are reviewed from the concept of gravitational waves and its mathematical derivation, using Einstein's general relativity, to the present status of bars and spherical detect... Resonant-mass gravitational wave detectors are reviewed from the concept of gravitational waves and its mathematical derivation, using Einstein's general relativity, to the present status of bars and spherical detectors, and their prospects for the future, which include dual detectors and spheres with non-resonant transducers. The review not only covers technical aspects of detectors and sciences that will be done, but also analyzes the subject in a historical perspective, covering the various detection efforts over four decades, starting from Weber's pioneering work. 展开更多
关键词 gravitation -- gravitational waves -- instrumentation: detectors
下载PDF
Sensitivity function analysis of gravitational wave detection with single-laser and large-momentum-transfer atomic sensors 被引量:2
16
作者 Biao Tang Bao-Cheng Zhang +2 位作者 Lin Zhou Jin Wang Ming-Sheng Zhan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第3期333-347,共15页
Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was als... Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to reduce the effect of shot noise and laser frequency noise. We use a sensitivity function to analyze all possible configurations of the new AI and to distinguish how many mo- menta are transferred in a specific configuration. By analyzing the new configuration, we further explore a detection scheme for gravitational waves, in particular, that ame- liorates laser frequency noise. We find that the amelioration occurs in such a scheme, but novelly, in some cases, the frequency noise can be canceled completely by using a proper data processing method. 展开更多
关键词 gravitational wave detection -- atomic interferometer-- laser frequencynoise
下载PDF
Imprints of relic gravitational waves on pulsar timing 被引量:2
17
作者 Ming-Lei Tong Yong-Heng Ding +4 位作者 Cheng-Shi Zhao Feng Gao Bao-Rong Yan Ting-Gao Yang Yu-Ping Gao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2016年第3期111-120,共10页
Relic gravitational waves (RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timi... Relic gravitational waves (RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timing. In this paper, we discuss the effects of RGWs on single pulsar timing, and quantitatively analyze the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noises in pulsar timing residuals are understood, even though simultaneously observing multiple millisecond pulsars is a more powerful technique for extracting gravitational wave signals. We correct the normalization of RGWs using observations of the cosmic microwave background (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We obtained new constraints on RGWs using recent observations from the Parkes Pulsar Timing Array, employing the tensor-to-scalar ratio r = 0.2 due to the tensor-type polarization observations of CMB by BICEP2 as a reference value, even though its reliability has been brought into question. Moreover, the constraints on RGWs from CMB and Big Bang nucleosynthesis will also be discussed for comparison. 展开更多
关键词 gravitational waves: general -- pulsars: general -- inflation
下载PDF
The astrophysical gravitational wave stochastic background 被引量:2
18
作者 Tania Regimbau 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2011年第4期369-390,共22页
A stochastic background of gravitational waves with astrophysical origins may have'resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would ... A stochastic background of gravitational waves with astrophysical origins may have'resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constraints on the physical properties of compact objects, the initial mass function and star for- marion history. On the other hand, it could be a 'noise' that would mask the stochastic background of its cosmological origin. We review the main astrophysical processes which are able to produce a stochastic background and discuss how they may differ from the primordial contribution in terms of statistical properties. Current detection methods are also presented. 展开更多
关键词 gravitational waves -- stochastic background: neutron stars -- blackholes
下载PDF
Detecting Very-High-Frequency Relic Gravitational Waves by a Waveguide 被引量:1
19
作者 Ming-Lei Tong Yang Zhang 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2008年第3期314-328,共15页
The polarization vector (PV) of an electromagnetic wave (EW) will experience a rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this consideration, Cruise's group has built an ... The polarization vector (PV) of an electromagnetic wave (EW) will experience a rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this consideration, Cruise's group has built an annular waveguide to detect GWs. We give detailed calculations of the rotations of polarization vector of an EW caused by incident GWs from various directions and in various polarization states, and then analyze the accumulative effects on the polarization vector when the EW passes n cycles along the annular waveguide. We reexamine the feasibility and limitation of this method to detect GWs of high frequency around 100 MHz, in particular the relic gravitational waves (RGWs). By comparing the spectrum of RGWs in the accelerating universe with the detector sensitivity of the current waveguide, it is found that the amplitude of the RGWs is too low to be detected by the waveguide detectors currently operating. Possible ways of improvements on detection are suggested. 展开更多
关键词 early universe -- instrumentation detectors -- gravitational waves --polarization
下载PDF
LIGO Experiments Cannot Detect Gravitational Waves by Using Laser Michelson Interferometers—Light’s Wavelength and Speed Change Simultaneously When Gravitational Waves Exist Which Make the Detections of Gravitational Waves Impossible for LIGO Experiments 被引量:9
20
作者 Xiaochun Mei Zhixun Huang +1 位作者 Policarpo Yōshin Ulianov Ping Yu 《Journal of Modern Physics》 2016年第13期1749-1761,共13页
It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave ... It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves. 展开更多
关键词 gravitational wave LIGO Experiment General Relativity Special Relativity Michelson Interferometer Michelson-Morley Experiment GW150914 WG151226
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部