The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(...The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.展开更多
The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis...The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.展开更多
Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method tha...Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.展开更多
Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced ...Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced here.展开更多
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen...To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.展开更多
Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which ...Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.展开更多
Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merg...Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.展开更多
We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing ...We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches.展开更多
Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce th...Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce the real-time burst alert system of GECAM,with the adoption of the BeiDou-3 short message communication service.We present the post-trigger operations,the detailed ground-based analysis,and the performance of the system.In the first year of the in-flight operation,GECAM was triggered by 42 gamma-ray bursts.The GECAM real-time burst alert system has the ability to distribute the alert within~1 minute after being triggered,which enables timely follow-up observations.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
In this work, we consider a conventional test of gravitational wave(GW) propagation which is based on the phenomenological parameterized dispersion relation to describe potential departures from General Relativity(GR)...In this work, we consider a conventional test of gravitational wave(GW) propagation which is based on the phenomenological parameterized dispersion relation to describe potential departures from General Relativity(GR)along the propagation of GWs. But different from tests conventionally performed previously, we vary multiple deformation coefficients simultaneously and employ the principal component analysis(PCA) method to remedy the strong degeneracy among deformation coefficients and obtain informative posteriors. The dominant PCA components can be better measured and constrained, and thus are expected to be more sensitive to potential departures from the waveform model. Using this method we analyze ten selected events and get the result that the combined posteriors of the dominant PCA parameters are consistent with GR within 99.7% credible intervals. The standard deviation of the first dominant PCA parameter is three times smaller than that of the original dispersion parameter of the leading order. However, the multi-parameter test with PCA is more sensitive to not only potential deviations from GR but also systematic errors of waveform models. The difference in results obtained by using different waveform templates hints that the demands of waveform accuracy are higher to perform the multiparameter test with PCA. Whereas, it cannot be strictly proven that the deviation is indeed and only induced by systematic errors. It requires more thorough research in the future to exclude other possible reasons in parameter estimation and data processing.展开更多
The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter c...The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter compares well with the standard theory and the rotation velocity is matched to a high precision. The stellar mass distributions obtained from the fit with graviton energy loss are used to derive the surface brightness magnitudes for the galaxies, which agree well with the observed measurements. In a new field of investigation, the graviton theory is applied to the observations of gravitational lenses. The results of these applications of the theory suggest that it can augment the standard methods and may eliminate the need for dark matter.展开更多
In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carri...In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law.展开更多
In the context of classical physics, Newton’s law of universal gravitation describes the attraction between two mass particles separated in space. In the same context a vector field Eg, that is not associated with an...In the context of classical physics, Newton’s law of universal gravitation describes the attraction between two mass particles separated in space. In the same context a vector field Eg, that is not associated with anything substantial, has been introduced as the entity that mediates in the gravitational interactions. In this article, we will show that Egis the mathematical quantity that—at the macroscopic level—fully characterizes the medium that makes the interaction between particles at rest possible. We identify that medium as “the gravitational field”. To define the nature of the gravitational field, we will start from the hypothesis that a material object manifests itself in space by the emission—at a rate proportional to its rest mass—of mass and energy less granular entities that—relative to an inertial reference frame—are rushing away with the speed of light and that are carriers of information referring to the position of their emitter (“g-information”). Because they transport nothing else than information, we call these entities “informatons”. We will show that the expanding cloud of g-information created by the continuous emission of informatons by a mass particle at rest can be fully characterized by the vector field Eg, which implies that that cloud can be identified as the gravitational field of the particle. We will also show that the gravitational interaction between mass particles can be explained as the response of a particle to the disturbance of the symmetry of its “proper” gravitational field by the field that, in its direct vicinity, is created and maintained by other mass particles.展开更多
The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation ar...The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation are only partially developed and furthermore, suffer from an unfortunate misstep regarding Hawking radiation and the hypothetical gravitational black-body temperature of a parcel or distribution of energy;this paper aims to fill in some of the theoretical gaps in the derivation of the Planck radiation formula for gravity (or non-Euclidean space-time), and there by provide a more complete and transparent quantum theory of thermal gravitational radiation.展开更多
Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action an...Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action and reaction. Many scientists including Newton, Mach, and Einstein recognized that inertial force has no reaction that originates on mass. Einstein calls the lack of reaction to the inertial force a serious criticism of the space-time continuum concept. Presented is the hypothesis that the inertial force develops in an interaction of two masses via the force field. The inertial force created by such a field has reaction force. The dynamic gravitational field predicted is strong enough to be detected in the laboratory. This article describes the laboratory experiment which can prove or disprove the hypothesis of the dynamic gravitational field. The inertial force, calculated using the equation for the dynamic gravitational field, agrees with the behavior of inertial force observed in the experiments on the Earth. The movement of the planets in our solar system calculated using that equation is the same as that calculated using Newton’s method. The space properties calculated by the candidate equation explain the aberration of light and the results of light propagation experiments. The dynamic gravitational field can explain the discrepancy between the observed velocity of stars in the galaxy and those predicted by Newton’s theory of gravitation without the need for the dark matter hypothesis.展开更多
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio...In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.展开更多
The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with...The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with Black Holes, with the horizon of events. Possibility of systematization of all Black Holes is shown. An illustration is given on the example of Black Hole S<sub>gr</sub>A*.展开更多
The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring...The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
基金supported by the National Key R&D Program of China(2022YFF0711404,2021YFA0718500)International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)+2 种基金the National Natural Science Foundation of China(NSFC,Grant No.U1938106)the open subject of the National HEP Data Center(E029S2S1)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)。
文摘The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.
基金supported by the National Key Research and Development Program of China(2022YFC2203700).
文摘The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.
基金supported by the National Natural Science Foundation of China under grant 12065017Jiangxi Provincial Natural Science Foundation under grant 20224ACB211001support from the Chinese Academy of Sciences(grant Nos.E329A3M1,E32983U8,and E3545KU2)。
文摘Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15021100)the National Natural Science Foundation of China(12147103)the Fundamental Research Funds for the Central Universities。
文摘Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced here.
基金This work was supported by the National Key Research and Development Program Topics(2020YFC2200902)the National Natural Science Foundation of China(11872110).
文摘To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.
文摘Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.
基金supported by the National Natural Science Foundation of China (Grant Nos.12021003,11920101003,and 11633001)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB23000000)。
文摘Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.
基金supported by the GHfund A(202302017475)supported by the Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20140050)+5 种基金the National Natural Science Foundation of China(Nos.11973070,11333008,11273061,11825303,and 11673065)the China Manned Space Project with No.CMS-CSST-2021-A01,CMSCSST-2021-A03,CMS-CSST-2021-B01the Joint Funds of the National Natural Science Foundation of China(No.U1931210)the support from Key Research Program of Frontier Sciences,CAS,grant No.ZDBS-LY-7013Program of Shanghai Academic/Technology Research Leaderthe support from the science research grants from the China Manned Space Project with CMS-CSST-2021-A04,CMS-CSST-2021-A07。
文摘We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches.
基金supported by the National Key R&D Program of China(2021YFA0718500,2022YFF0711404)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.U2031205,12133007)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15360000。
文摘Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),consisting of two microsatellites,is designed to detect gamma-ray bursts associated with gravitational-wave events.Here,we introduce the real-time burst alert system of GECAM,with the adoption of the BeiDou-3 short message communication service.We present the post-trigger operations,the detailed ground-based analysis,and the performance of the system.In the first year of the in-flight operation,GECAM was triggered by 42 gamma-ray bursts.The GECAM real-time burst alert system has the ability to distribute the alert within~1 minute after being triggered,which enables timely follow-up observations.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
基金supported by the National Key R&D Program of China(grant No.2022YFC2204602 and 2021YFC2203102)Strategic Priority Research Program of the Chinese Academy of Science(grant No.XDB0550300)+4 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.12325301 and 12273035)the Fundamental Research Funds for the Central Universities(grant No.WK2030000036 and WK3440000004)the Science Research Grants from the China Manned Space Project(grant No.CMS-CSST-2021-B01)the 111 Project for“Observational and Theoretical Research on Dark Matter and Dark Energy”(grant No.B23042)supported in part by the National Key Research and Development Program of China grant No.2022YFC2807303。
文摘In this work, we consider a conventional test of gravitational wave(GW) propagation which is based on the phenomenological parameterized dispersion relation to describe potential departures from General Relativity(GR)along the propagation of GWs. But different from tests conventionally performed previously, we vary multiple deformation coefficients simultaneously and employ the principal component analysis(PCA) method to remedy the strong degeneracy among deformation coefficients and obtain informative posteriors. The dominant PCA components can be better measured and constrained, and thus are expected to be more sensitive to potential departures from the waveform model. Using this method we analyze ten selected events and get the result that the combined posteriors of the dominant PCA parameters are consistent with GR within 99.7% credible intervals. The standard deviation of the first dominant PCA parameter is three times smaller than that of the original dispersion parameter of the leading order. However, the multi-parameter test with PCA is more sensitive to not only potential deviations from GR but also systematic errors of waveform models. The difference in results obtained by using different waveform templates hints that the demands of waveform accuracy are higher to perform the multiparameter test with PCA. Whereas, it cannot be strictly proven that the deviation is indeed and only induced by systematic errors. It requires more thorough research in the future to exclude other possible reasons in parameter estimation and data processing.
文摘The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter compares well with the standard theory and the rotation velocity is matched to a high precision. The stellar mass distributions obtained from the fit with graviton energy loss are used to derive the surface brightness magnitudes for the galaxies, which agree well with the observed measurements. In a new field of investigation, the graviton theory is applied to the observations of gravitational lenses. The results of these applications of the theory suggest that it can augment the standard methods and may eliminate the need for dark matter.
文摘In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law.
文摘In the context of classical physics, Newton’s law of universal gravitation describes the attraction between two mass particles separated in space. In the same context a vector field Eg, that is not associated with anything substantial, has been introduced as the entity that mediates in the gravitational interactions. In this article, we will show that Egis the mathematical quantity that—at the macroscopic level—fully characterizes the medium that makes the interaction between particles at rest possible. We identify that medium as “the gravitational field”. To define the nature of the gravitational field, we will start from the hypothesis that a material object manifests itself in space by the emission—at a rate proportional to its rest mass—of mass and energy less granular entities that—relative to an inertial reference frame—are rushing away with the speed of light and that are carriers of information referring to the position of their emitter (“g-information”). Because they transport nothing else than information, we call these entities “informatons”. We will show that the expanding cloud of g-information created by the continuous emission of informatons by a mass particle at rest can be fully characterized by the vector field Eg, which implies that that cloud can be identified as the gravitational field of the particle. We will also show that the gravitational interaction between mass particles can be explained as the response of a particle to the disturbance of the symmetry of its “proper” gravitational field by the field that, in its direct vicinity, is created and maintained by other mass particles.
文摘The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation are only partially developed and furthermore, suffer from an unfortunate misstep regarding Hawking radiation and the hypothetical gravitational black-body temperature of a parcel or distribution of energy;this paper aims to fill in some of the theoretical gaps in the derivation of the Planck radiation formula for gravity (or non-Euclidean space-time), and there by provide a more complete and transparent quantum theory of thermal gravitational radiation.
文摘Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action and reaction. Many scientists including Newton, Mach, and Einstein recognized that inertial force has no reaction that originates on mass. Einstein calls the lack of reaction to the inertial force a serious criticism of the space-time continuum concept. Presented is the hypothesis that the inertial force develops in an interaction of two masses via the force field. The inertial force created by such a field has reaction force. The dynamic gravitational field predicted is strong enough to be detected in the laboratory. This article describes the laboratory experiment which can prove or disprove the hypothesis of the dynamic gravitational field. The inertial force, calculated using the equation for the dynamic gravitational field, agrees with the behavior of inertial force observed in the experiments on the Earth. The movement of the planets in our solar system calculated using that equation is the same as that calculated using Newton’s method. The space properties calculated by the candidate equation explain the aberration of light and the results of light propagation experiments. The dynamic gravitational field can explain the discrepancy between the observed velocity of stars in the galaxy and those predicted by Newton’s theory of gravitation without the need for the dark matter hypothesis.
文摘In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.
文摘The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with Black Holes, with the horizon of events. Possibility of systematization of all Black Holes is shown. An illustration is given on the example of Black Hole S<sub>gr</sub>A*.
文摘The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.