The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an i...The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load.Consequently,persistent overload situations eventually result in network congestion.The Software Defined Network(SDN)technology is employed in data centers as a network architecture to enhance performance.This paper introduces an adaptive congestion control strategy,named DA-DCTCP,for SDN-based Data Centers.It incorporates Explicit Congestion Notification(ECN)and Round-Trip Time(RTT)to establish congestion awareness and an ECN marking model.To mitigate incorrect congestion caused by abrupt flows,an appropriate ECN marking is selected based on the queue length and its growth slope,and the congestion window(CWND)is adjusted by calculating RTT.Simultaneously,the marking threshold for queue length is continuously adapted using the current queue length of the switch as a parameter to accommodate changes in data centers.The evaluation conducted through Mininet simulations demonstrates that DA-DCTCP yields advantages in terms of throughput,flow completion time(FCT),latency,and resistance against packet loss.These benefits contribute to reducing data center congestion,enhancing the stability of data transmission,and improving throughput.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios ev...In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.展开更多
With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.Howeve...With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.However,traditional TCPs are ill-suited to such situations and always result in the inefficiency(e.g.missing the flow deadline,inevitable throughput collapse)of data transfers.This further degrades the user-perceived quality of service(QoS)in data centers.To reduce the flow completion time of mice and deadline-sensitive flows along with promoting the throughput of elephant flows,an efficient and deadline-aware priority-driven congestion control(PCC)protocol,which grants mice and deadline-sensitive flows the highest priority,is proposed in this paper.Specifically,PCC computes the priority of different flows according to the size of transmitted data,the remaining data volume,and the flows’deadline.Then PCC adjusts the congestion window according to the flow priority and the degree of network congestion.Furthermore,switches in data centers control the input/output of packets based on the flow priority and the queue length.Different from existing TCPs,to speed up the data transfers of mice and deadline-sensitive flows,PCC provides an effective method to compute and encode the flow priority explicitly.According to the flow priority,switches can manage packets efficiently and ensure the data transfers of high priority flows through a weighted priority scheduling with minor modification.The experimental results prove that PCC can improve the data transfer performance of mice and deadline-sensitive flows while guaranting the throughput of elephant flows.展开更多
The Adaptive Quality Control Phantom (AQCP) is a computer-controlled phantom which positions and moves a radioactive source in the Field of View (FOV) of an imaging nuclear medicine device on a definite path to produc...The Adaptive Quality Control Phantom (AQCP) is a computer-controlled phantom which positions and moves a radioactive source in the Field of View (FOV) of an imaging nuclear medicine device on a definite path to produce a spatial distribution of gamma rays to perform QC Tests such as the Collimator Hole Angulation (CHA) and the Center of Rotation (COR) of Single Photon Emission Computer Tomography (SPECT). The collimator hole angulation for six collimators was measured using a point source and a computer-controlled cylindrical positioning system. In this method, the displacement of the image of a point source was examined as the AQCP was moving point source vertically away from the collimator face. The results of the high-accuracy measurement method of CHA show that the measurement accuracy for absolute angulation errors is better than ±0.024°. The Root Mean Square (RMS) of CHA for LEHR, LEHS and LEUHR collimators of SMV dual heads camera and LEGP, MEGP and HEGP of GE Millennium MG were evaluated to be 0.290°, 0.292°, 0.208°, 0.154°, 0.220° and 0.202°, respectively. It is to be added in this connection that the evaluated RMS of CHA for LEHR collimator with the distance variation from the collimator’s surface ±1 mm has been varied ±0.04 degree. A new method for the center of rotation assessment by AQCP is introduced and the results of this proposed method as compared with the routine QC test and their differences are discussed in detail. We defined and measured a new parameter called Dynamic Mechanical Error (DME) for applying the gantry motion correction.展开更多
From the perspective of COVID-19’s prevention and control, to test effectiveness of existing control measures for shopping center buildings, taking Weilaishi Shopping Center of Handan City as an example, Anylogic sof...From the perspective of COVID-19’s prevention and control, to test effectiveness of existing control measures for shopping center buildings, taking Weilaishi Shopping Center of Handan City as an example, Anylogic software is used for analogue simulation of the whole shopping process. According to existing control means of Weilaishi Shopping Center, the model sets three different simulation conditions: “no control state”, “restricting entrance and exit opening” and “increasing epidemic prevention distance”. The epidemic prevention effects of different control methods are intuitively displayed through the simulated output thermal diagram and the statistical diagram of the number of infected people. The results show that restricting the opening of entrances and exits can reduce the number of infected people by 36%, and increasing the epidemic prevention distance can reduce the number of infected people by 89.8%. Both control methods can play a certain epidemic prevention effect.展开更多
There are many patients in the blood purification center who need maintenance hemodialysis to maintain life. Those patients generally havelow resistance and are easily exposed to coronavirus because they go back and f...There are many patients in the blood purification center who need maintenance hemodialysis to maintain life. Those patients generally havelow resistance and are easily exposed to coronavirus because they go back and forth the hospital and residence three times a week andclosely contact with family, caregivers, community personnel, people in various means of transportation, medical staff, and other patientsvisiting hospital. Therefore, the blood purification center has become a high‑risk environment for the spread of COVID-19 infection. In viewof this, our center quickly responded to the formulation and implementation of infection prevention and control measures suitable for thecharacteristics of the blood purification center and continuous renal replacement therapy (CRRT) emergency plan for fever and suspectedpatients. According to these measures, we have a positive effect on preventing and controlling nosocomial infection in the blood purificationcenter.展开更多
The main goal of the paper is to interpret the concept of organizational change in the perspective of critical management studies, by analyzing both the discourses and the control practices used by management. We aim ...The main goal of the paper is to interpret the concept of organizational change in the perspective of critical management studies, by analyzing both the discourses and the control practices used by management. We aim at denaturalize the concept of change related to transition from a bureaucratic model to a professional (post-bureaucratic) model of the call centers organizational design, showing how these discourses and practices reproduce control systems. For this purpose, two cases study of call center outsourced industry are presented. On one hand, we emphasize the bureaucratic nature of call center A associated with standardization of processes and products and where work is highly controlled and routinised. On the other hand, we observe a different image of call center: call center B can be described as a place where work is customized, workers are considered key resources with higher competences and skills that are able to give customers unique solutions and to give answer to complex questions. We suggest that these "new practices" and "new organizational approaches" are merely illusions of change. We argue that in professional model (call center B), control institutionalized through technology is strengthened and deepened by the use of post-bureaucratic control in shaping organizational behaviors, reproducing a Panopticon structure both in terms of electronic surveillance and in terms of behavioral (self) regulation and discipline展开更多
In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe mult...In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The traffic within data centers exhibits bursts and unpredictable patterns.This rapid growth in network traffic has two consequences:it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load.Consequently,persistent overload situations eventually result in network congestion.The Software Defined Network(SDN)technology is employed in data centers as a network architecture to enhance performance.This paper introduces an adaptive congestion control strategy,named DA-DCTCP,for SDN-based Data Centers.It incorporates Explicit Congestion Notification(ECN)and Round-Trip Time(RTT)to establish congestion awareness and an ECN marking model.To mitigate incorrect congestion caused by abrupt flows,an appropriate ECN marking is selected based on the queue length and its growth slope,and the congestion window(CWND)is adjusted by calculating RTT.Simultaneously,the marking threshold for queue length is continuously adapted using the current queue length of the switch as a parameter to accommodate changes in data centers.The evaluation conducted through Mininet simulations demonstrates that DA-DCTCP yields advantages in terms of throughput,flow completion time(FCT),latency,and resistance against packet loss.These benefits contribute to reducing data center congestion,enhancing the stability of data transmission,and improving throughput.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金supported by the National Natural Science Foundation of China (No.62102046,62072249,62072056)JinWang,YongjunRen,and Jinbin Hu receive the grant,and the URLs to the sponsors’websites are https://www.nsfc.gov.cn/.This work is also funded by the National Science Foundation of Hunan Province (No.2022JJ30618,2020JJ2029).
文摘In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.
基金supported part by the National Natural Science Foundation of China(61601252,61801254)Public Technology Projects of Zhejiang Province(LG-G18F020007)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LY20F020008,LY18F020011,LY20F010004)K.C.Wong Magna Fund in Ningbo University。
文摘With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.However,traditional TCPs are ill-suited to such situations and always result in the inefficiency(e.g.missing the flow deadline,inevitable throughput collapse)of data transfers.This further degrades the user-perceived quality of service(QoS)in data centers.To reduce the flow completion time of mice and deadline-sensitive flows along with promoting the throughput of elephant flows,an efficient and deadline-aware priority-driven congestion control(PCC)protocol,which grants mice and deadline-sensitive flows the highest priority,is proposed in this paper.Specifically,PCC computes the priority of different flows according to the size of transmitted data,the remaining data volume,and the flows’deadline.Then PCC adjusts the congestion window according to the flow priority and the degree of network congestion.Furthermore,switches in data centers control the input/output of packets based on the flow priority and the queue length.Different from existing TCPs,to speed up the data transfers of mice and deadline-sensitive flows,PCC provides an effective method to compute and encode the flow priority explicitly.According to the flow priority,switches can manage packets efficiently and ensure the data transfers of high priority flows through a weighted priority scheduling with minor modification.The experimental results prove that PCC can improve the data transfer performance of mice and deadline-sensitive flows while guaranting the throughput of elephant flows.
文摘The Adaptive Quality Control Phantom (AQCP) is a computer-controlled phantom which positions and moves a radioactive source in the Field of View (FOV) of an imaging nuclear medicine device on a definite path to produce a spatial distribution of gamma rays to perform QC Tests such as the Collimator Hole Angulation (CHA) and the Center of Rotation (COR) of Single Photon Emission Computer Tomography (SPECT). The collimator hole angulation for six collimators was measured using a point source and a computer-controlled cylindrical positioning system. In this method, the displacement of the image of a point source was examined as the AQCP was moving point source vertically away from the collimator face. The results of the high-accuracy measurement method of CHA show that the measurement accuracy for absolute angulation errors is better than ±0.024°. The Root Mean Square (RMS) of CHA for LEHR, LEHS and LEUHR collimators of SMV dual heads camera and LEGP, MEGP and HEGP of GE Millennium MG were evaluated to be 0.290°, 0.292°, 0.208°, 0.154°, 0.220° and 0.202°, respectively. It is to be added in this connection that the evaluated RMS of CHA for LEHR collimator with the distance variation from the collimator’s surface ±1 mm has been varied ±0.04 degree. A new method for the center of rotation assessment by AQCP is introduced and the results of this proposed method as compared with the routine QC test and their differences are discussed in detail. We defined and measured a new parameter called Dynamic Mechanical Error (DME) for applying the gantry motion correction.
基金Sponsored by Hebei Social Science Development Research Project in 2021 (20210301135)。
文摘From the perspective of COVID-19’s prevention and control, to test effectiveness of existing control measures for shopping center buildings, taking Weilaishi Shopping Center of Handan City as an example, Anylogic software is used for analogue simulation of the whole shopping process. According to existing control means of Weilaishi Shopping Center, the model sets three different simulation conditions: “no control state”, “restricting entrance and exit opening” and “increasing epidemic prevention distance”. The epidemic prevention effects of different control methods are intuitively displayed through the simulated output thermal diagram and the statistical diagram of the number of infected people. The results show that restricting the opening of entrances and exits can reduce the number of infected people by 36%, and increasing the epidemic prevention distance can reduce the number of infected people by 89.8%. Both control methods can play a certain epidemic prevention effect.
文摘There are many patients in the blood purification center who need maintenance hemodialysis to maintain life. Those patients generally havelow resistance and are easily exposed to coronavirus because they go back and forth the hospital and residence three times a week andclosely contact with family, caregivers, community personnel, people in various means of transportation, medical staff, and other patientsvisiting hospital. Therefore, the blood purification center has become a high‑risk environment for the spread of COVID-19 infection. In viewof this, our center quickly responded to the formulation and implementation of infection prevention and control measures suitable for thecharacteristics of the blood purification center and continuous renal replacement therapy (CRRT) emergency plan for fever and suspectedpatients. According to these measures, we have a positive effect on preventing and controlling nosocomial infection in the blood purificationcenter.
文摘The main goal of the paper is to interpret the concept of organizational change in the perspective of critical management studies, by analyzing both the discourses and the control practices used by management. We aim at denaturalize the concept of change related to transition from a bureaucratic model to a professional (post-bureaucratic) model of the call centers organizational design, showing how these discourses and practices reproduce control systems. For this purpose, two cases study of call center outsourced industry are presented. On one hand, we emphasize the bureaucratic nature of call center A associated with standardization of processes and products and where work is highly controlled and routinised. On the other hand, we observe a different image of call center: call center B can be described as a place where work is customized, workers are considered key resources with higher competences and skills that are able to give customers unique solutions and to give answer to complex questions. We suggest that these "new practices" and "new organizational approaches" are merely illusions of change. We argue that in professional model (call center B), control institutionalized through technology is strengthened and deepened by the use of post-bureaucratic control in shaping organizational behaviors, reproducing a Panopticon structure both in terms of electronic surveillance and in terms of behavioral (self) regulation and discipline
文摘In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.