The age hardening behavior of gravity cast B356 aluminum alloy was investigated by differential scanning calorimetry(DSC), hardness measurements and tensile tests. Three different artificial aging temperatures were se...The age hardening behavior of gravity cast B356 aluminum alloy was investigated by differential scanning calorimetry(DSC), hardness measurements and tensile tests. Three different artificial aging temperatures were selected, namely 155, 165 and 180 °C, with heat treatment time from 40 min to 32 h. DSC analysis results show that cluster formation begins below room temperature(at around-10 °C). Since cluster formation influences the subsequent precipitation of the main strengthening β'' phase, it can be inferred that a delay between solutionizing and artificial aging has a detrimental effect on the mechanical properties of the alloy. It was also confirmed that the hardness and the tensile properties of the alloy reach the maximum values when β'' phase is completely developed during the artificial aging. This happens after 16 h for samples aged at 155 °C, after 6 h for samples aged at 165 °C and after 4 h for samples aged at 180 °C. A subsequent decrease of the mechanical properties, observed only in the sample aged at the highest temperature, with increasing aging time can be associated with the transformation of the coherent β'' phase into the semi-coherent β' phase. Finally, the activation energy associated with the precipitation of β'' phase was calculated to be 57.2 k J/mol.展开更多
This study investigated whether the pouring ladle's outlet shape could reduce the porosity of aluminum alloy casting products and whether it could be applied to mass production of automotive brackets based on comp...This study investigated whether the pouring ladle's outlet shape could reduce the porosity of aluminum alloy casting products and whether it could be applied to mass production of automotive brackets based on computer simulations and experiment.The filling behaviors of the melt were simulated to compare the flow characteristics of the molten metal poured from the conventional ladle and the proposed ladle.Results show that for the conventional ladle,the pouring metal is V-shaped,while it is relatively circular and poured at a more constant rate in the proposed ladle.CT scans reveal that the proposed ladle reduces the porosity of the cast product.The proposed ladle resulted in an average of 30 fewer pores,a 299.56 mm3 smaller average total pore volume,and a 0.041% lower difference in average porosity.It is concludes that the proposed ladle can be used in the gravity casting process.By changing the ladle outlet shape can reduce the casting failure rate of massproduced automobile bracket.展开更多
In recent years,certain foundry processes have made it possible to obtain products with very thin parts,below the4mmthreshold of the permanent mold casting technology.The safety margins of these castings have been red...In recent years,certain foundry processes have made it possible to obtain products with very thin parts,below the4mmthreshold of the permanent mold casting technology.The safety margins of these castings have been reduced,so the T6heattreatment conditions adopted for the Al?7Si?Mg alloys need to be investigated to identify the best combination of strength andductility.Furthermore,the cost and the production time associated with T6heat treatment have to be optimized.In the present work,an experimental study was carried out to optimize the solution treatment and artificial aging conditions in gravity cast thin bars ofB356aluminum alloy modified with Sr.Two solution temperatures were selected,530°C and550°C,respectively,with solutiontime ranging from2to8h,followed by water quenching and artificial aging at165°C with aging time from2to32h.The results ofhardness and tensile tests were correlated with differential scanning calorimetry(DSC)analysis.The best combination of mechanicalproperties and heat treatment duration was obtained with2h solutionizing at550°C and8h aging at165°C.DSC analysis showedthat the alloy’s mechanical properties reach the maximum value when theβ''phase is completely developed during the artificialaging.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
Pitting behavior of thixoformed A356 alloy, with different reheating temperatures, was evaluated. Linear sweep voltammetric tests were used to study the pitting behavior of thixoformed, rheocast and gravity-cast A356 ...Pitting behavior of thixoformed A356 alloy, with different reheating temperatures, was evaluated. Linear sweep voltammetric tests were used to study the pitting behavior of thixoformed, rheocast and gravity-cast A356 alloy in a 3.5% NaCl solution. A simulation method was also used in order to identify local galvanic corrosion current density between local galvanic couples. The results obtained show that the resistance to pitting corrosion of the thixoformed samples formed at 600 ℃ is higher than that of the samples formed at 610 ℃ as well as rheocast and gravity-cast samples. These results could be explained by morphological aspects of silicon phase as well as the area effect as related to galvanic corrosion between silicon particles and eutectic aluminum phase.展开更多
Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycl...Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycles, were applied to A356 brake calipers cast using a LK DCC630 HPDC machine.Vickers hardness measurements at a cross section of the brake calipers were performed, indicating that similar values can be obtained when using the significantly shorter heat treatment cycles.Finally, the typical tensile properties that can be obtained for SSM-HPDC A356 brake calipers are compared with those manufactured by gravity die casting.Results indicate that the differences in microstructures (globular or dendritic) do not have a noteworthy effect on the heat treatment response.This implies that the short heat treatment cycles originally developed for globular SSM-HPDC A356 castings can be successfully applied to dendritic liquid A356 castings too.展开更多
基金funded by Regione Lombardia-MIUR (Research Program "2 MILLIMETRI" ID 30152773)
文摘The age hardening behavior of gravity cast B356 aluminum alloy was investigated by differential scanning calorimetry(DSC), hardness measurements and tensile tests. Three different artificial aging temperatures were selected, namely 155, 165 and 180 °C, with heat treatment time from 40 min to 32 h. DSC analysis results show that cluster formation begins below room temperature(at around-10 °C). Since cluster formation influences the subsequent precipitation of the main strengthening β'' phase, it can be inferred that a delay between solutionizing and artificial aging has a detrimental effect on the mechanical properties of the alloy. It was also confirmed that the hardness and the tensile properties of the alloy reach the maximum values when β'' phase is completely developed during the artificial aging. This happens after 16 h for samples aged at 155 °C, after 6 h for samples aged at 165 °C and after 4 h for samples aged at 180 °C. A subsequent decrease of the mechanical properties, observed only in the sample aged at the highest temperature, with increasing aging time can be associated with the transformation of the coherent β'' phase into the semi-coherent β' phase. Finally, the activation energy associated with the precipitation of β'' phase was calculated to be 57.2 k J/mol.
基金supported by the National Research Foundation of Korea(NRF)(2015R1A5A1037668)the Ministry of Trade,Industry and Energy(Grant N0002310)
文摘This study investigated whether the pouring ladle's outlet shape could reduce the porosity of aluminum alloy casting products and whether it could be applied to mass production of automotive brackets based on computer simulations and experiment.The filling behaviors of the melt were simulated to compare the flow characteristics of the molten metal poured from the conventional ladle and the proposed ladle.Results show that for the conventional ladle,the pouring metal is V-shaped,while it is relatively circular and poured at a more constant rate in the proposed ladle.CT scans reveal that the proposed ladle reduces the porosity of the cast product.The proposed ladle resulted in an average of 30 fewer pores,a 299.56 mm3 smaller average total pore volume,and a 0.041% lower difference in average porosity.It is concludes that the proposed ladle can be used in the gravity casting process.By changing the ladle outlet shape can reduce the casting failure rate of massproduced automobile bracket.
基金partly funded by Regione Lombardia–MIUR(research program “2 MILLIMETRI” ID 30152773)
文摘In recent years,certain foundry processes have made it possible to obtain products with very thin parts,below the4mmthreshold of the permanent mold casting technology.The safety margins of these castings have been reduced,so the T6heattreatment conditions adopted for the Al?7Si?Mg alloys need to be investigated to identify the best combination of strength andductility.Furthermore,the cost and the production time associated with T6heat treatment have to be optimized.In the present work,an experimental study was carried out to optimize the solution treatment and artificial aging conditions in gravity cast thin bars ofB356aluminum alloy modified with Sr.Two solution temperatures were selected,530°C and550°C,respectively,with solutiontime ranging from2to8h,followed by water quenching and artificial aging at165°C with aging time from2to32h.The results ofhardness and tensile tests were correlated with differential scanning calorimetry(DSC)analysis.The best combination of mechanicalproperties and heat treatment duration was obtained with2h solutionizing at550°C and8h aging at165°C.DSC analysis showedthat the alloy’s mechanical properties reach the maximum value when theβ''phase is completely developed during the artificialaging.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
文摘Pitting behavior of thixoformed A356 alloy, with different reheating temperatures, was evaluated. Linear sweep voltammetric tests were used to study the pitting behavior of thixoformed, rheocast and gravity-cast A356 alloy in a 3.5% NaCl solution. A simulation method was also used in order to identify local galvanic corrosion current density between local galvanic couples. The results obtained show that the resistance to pitting corrosion of the thixoformed samples formed at 600 ℃ is higher than that of the samples formed at 610 ℃ as well as rheocast and gravity-cast samples. These results could be explained by morphological aspects of silicon phase as well as the area effect as related to galvanic corrosion between silicon particles and eutectic aluminum phase.
文摘Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycles, were applied to A356 brake calipers cast using a LK DCC630 HPDC machine.Vickers hardness measurements at a cross section of the brake calipers were performed, indicating that similar values can be obtained when using the significantly shorter heat treatment cycles.Finally, the typical tensile properties that can be obtained for SSM-HPDC A356 brake calipers are compared with those manufactured by gravity die casting.Results indicate that the differences in microstructures (globular or dendritic) do not have a noteworthy effect on the heat treatment response.This implies that the short heat treatment cycles originally developed for globular SSM-HPDC A356 castings can be successfully applied to dendritic liquid A356 castings too.