期刊文献+
共找到1,354篇文章
< 1 2 68 >
每页显示 20 50 100
Influence of topography on the fine structures of stratospheric gravity waves:An analysis using COSMIC-2 temperature data 被引量:1
1
作者 JiaRui Wei Xiao Liu +2 位作者 JiYao Xu QinZeng Li Hong Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期497-513,共17页
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O... We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S. 展开更多
关键词 TOPOGRAPHY fine structures stratospheric gravity waves Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) dissipation layers
下载PDF
Geological structure of the yellow sea area from regional gravity and magnetic interpretation 被引量:37
2
作者 Zhang Minghua Xu Deshu Chen Jianwen 《Applied Geophysics》 SCIE CSCD 2007年第2期75-83,共9页
Regional gravity and aeromagnetic data covering the area of 32°- 38° N, 118°-127° E at the scale of 1:1,000,000 are coordinated and integrated in a synthetic study of the South China Yellow Sea an... Regional gravity and aeromagnetic data covering the area of 32°- 38° N, 118°-127° E at the scale of 1:1,000,000 are coordinated and integrated in a synthetic study of the South China Yellow Sea and adjacent areas. Depth to magnetic crystalline basement and its structure are determined by magnetic anomaly inversion. Depth to and thickness of the Paleozoic rock are also revealed by gravity anomaly inversion with constrains of the basement and known seismic information from several profiles. Structure units, main faults, basin boundaries, and sub-suppressions are outlined on the basis of gravity data interpretation. 展开更多
关键词 Yellow Sea gravity and magnetic interpretation regional structure oil basins.
下载PDF
The structure and ability of the China Seismological Gravity Monitoring System 被引量:3
3
作者 贾民育 詹洁晖 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第4期384-392,共9页
This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the proj... This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the project of 'China Crustal Movement Observation Network (CCMON)' has been performed. The main conclusions drawn are as follows: ①LSGMN has good monitoring and prediction ability for the earthquake of M_s about 5. But it lacks ability to monitor and predict the strong earthquake of M_s>6 because of the little range of the observation network;②CSGMS has good ability to monitor and predict the earthquake of M_s>7, but the resolving power is not enough for the earthquake magnitude from M_s=6 to M_s=7 because the observation stations are too sparse. 展开更多
关键词 temporal gravity change earthquake prediction monitoring network structure monitoring ability
下载PDF
Crustal structure beneath Beijing and its surrounding regions derived from gravity data 被引量:2
4
作者 Wenliang Jiang Jingfa Zhang +1 位作者 Xiaocui Lu Jing Lu 《Earthquake Science》 CSCD 2011年第3期299-310,共12页
In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. L... In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake (Ms8.0) and Tangshan earthquake (Ms7.8). 展开更多
关键词 Beijing area fine structure crust and upper mantle Bouguer gravity anomaly wavelet multi-scale analysis
下载PDF
Structural features in the mid-southern section of the Kyushu–Palau Ridge based on satellite altimetry gravity anomaly
5
作者 Feifei Zhang Dingding Wang +3 位作者 Xiaolin Ji Fanghui Hou Yuan Yang Wanyin Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期50-60,共11页
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ... The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect. 展开更多
关键词 structural features satellite altimetry gravity data Kyushu-Palau Ridge Central Basin Rift FAULTS Moho depth
下载PDF
Relationship between the regional tectonic activity and crustal structure in the eastern Tibetan plateau discovered by gravity anomaly 被引量:1
6
作者 Xiao Xu Rui Gao Xiaoyu Guo 《Earthquake Science》 CSCD 2016年第2期71-81,共11页
The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most ... The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus,a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative(THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks,including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the SongpanGarze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion,which is coincident with the flowing direction indicatedfrom the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault. 展开更多
关键词 Eastern Tibetan plateau Tectonic activity Crustal structures gravity anomaly
下载PDF
Basin structure and multiresource potential based on high-precision airborne gravity and magnetic data 被引量:2
7
作者 Liu Yan-Xu Li Wen-Yong +4 位作者 Cao An-Qi Gao Shan Wang Ning Wang Li-Jie Yang Cheng 《Applied Geophysics》 SCIE CSCD 2022年第3期433-446,472,共15页
In this paper,we use high-precision airborne gravity and magnetic data to study the geophysical characteristics of the western slope of the Songliao Basin and its adjacent areas and evaluate the resource potential.We ... In this paper,we use high-precision airborne gravity and magnetic data to study the geophysical characteristics of the western slope of the Songliao Basin and its adjacent areas and evaluate the resource potential.We performed an in-depth analysis of three aspects of the basin characteristics:the characteristics of residual strata,the development characteristics of faults,and the distribution characteristics of magmatic rocks.Next,we analyzed the forming background of organic(oil and gas)resources and inorganic(uranium ore and hot dry rock)resources.The results showed that the new Upper Paleozoic strata have significant differences in different regions of the study area(with a thickness of 0–8000 m),mainly distributed in the eastern and northern regions but absent in the middle eastern and western regions.Furthermore,the thickness and depth of the Mesozoic layer varied between the eastern and western regions;it was thicker and deeper in the middle eastern region but thinner and shallower in the western region,and it is absent in most western regions.The main faults in the region are in the north–northeast(NNE)direction.Faults in the NE–NNE and NW directions jointly controlled the morphology of the secondary structural units.Magmatic rocks are relatively developed in the middle and eastern parts of the region.Most magmatic rocks are distributed along the faults and their sides,clearly reflecting the control of the faults on magmatic activities.The western slope of the Songliao basin and its surroundings have a favorable geological setting for the accumulation(mineralization)of oil,gas,shale oil,hot dry rock,and uranium ore.It is conducive to oil and gas exploration of deep new strata and collaborative exploration of multiple resources. 展开更多
关键词 Airborne gravity airborne magnetism basin structure multiple resources Songliao basin resource potential.
下载PDF
Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang-Guiyang gravity profile 被引量:1
8
作者 Xi Zhang Peng Wang +3 位作者 Tao Xu Yun Chen José Badal JiWen Teng 《Earth and Planetary Physics》 2018年第1期74-81,共8页
The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. Fo... The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. For this purpose, we conducted the gravity survey along an 800-km-long profile, which stretched laterally along the latitude 27°N from Lijiang(Yunnan province) to Guiyang(Guizhou province). The fieldwork included 338 gravity measurements distributed from the inner zone to the outer zone of the mantle plume head.After a series of gravity reductions, we calculated the Bouguer gravity anomaly and then constructed the density model for ELIP by iterative forward modeling from an initial density model tightly constrained by wide-angle seismic reflection data. The topography of the Moho, here physically interpreted as a density discontinuity of ~0.4 g·cm^(–3), gradually rises from the inner zone(~50 km deep) to the outer zone(~40 km), describes a thicker crust in the inner zone than in any other segment of the profile and largely reproduces the shape of the Bouguer gravity anomaly curve. Both the Bouguer gravity and the density structure show significant differences with respect to the inner zone and the other two zones of ELIP according to the commonly accepted partition of the Emeishan area. A thicker and denser middle-lower crust seems to be the main feature of the western section of the profile, which is likely related to its mafic magmatic composition due to magmatic underplating of the Permian mantle plume. 展开更多
关键词 Bouguer gravity seismic reflection data forward modeling CRUSTAL density structure EMEISHAN large IGNEOUS province South China
下载PDF
A Coupled Soil-Fluid-Structure Simulation of the Near-Field Earthquake Effects on Gravity Type Quay-Walls
9
作者 M.Zeinoddini H.Matin Nikoo F.Ahmadpour 《China Ocean Engineering》 SCIE EI CSCD 2013年第4期481-494,共14页
This study focuses on non-linear seismic response of concrete gravity quay-wall structures subjected to near-fault ground motions, a subject which seems not to have received much attention in the literature. A two-dim... This study focuses on non-linear seismic response of concrete gravity quay-wall structures subjected to near-fault ground motions, a subject which seems not to have received much attention in the literature. A two-dimensional coupled fluid-structure-soil finite element modelling is employed to obtain the quay-wall response. The seawater medium is represented by acoustic type, potential based fluid elements. The elasto-plastic behavior of the soil medium is idealized using Drucker-Prager yield criterion based on associated flow rule assumption. Four nodded plane strain elements are used to model the concrete wall, foundation, subsoil, backfill and seabed zones. Fluid Structure Interface (FSI) elements are considered between the seawater interfaces with the quay-wall and the seabed. Frictional contact elements are employed between the wall and soil interfaces. The numerical model is validated using field measurements available for permanent drifts in a quay-wall damaged during Kobe earthquake. Reasonable agreements are obtained between the model predictions and the field measurements. Non-linear seismic analyses of the selected quay-wall subjected to both near-fault and far-fault ground motions are performed. An incremental dynamic analysis approach (IDA) is used. In general, at least for models examined in the current study, the gravity quay-walls are found to be more vulnerable to near-field, in comparison with the corresponding far-field, earthquakes. 展开更多
关键词 coastal structure gravity quay-wall near-fault earthquake Incremental Dynamic Analysis (IDA)
下载PDF
Analysis of Dynamic Stability of Ocean Gravity Structure Foundations
10
作者 He Guangna and Cao Yalin Professor, Dalian University of Technology, Dalian 116024 . Former Postgruate Student, Dalian University of Technology, Dalian 116024 《China Ocean Engineering》 SCIE EI 1995年第2期183-192,共10页
Based on unified equivalent harmonic loading on seabed foundation and energy approach suggested by the authors, the development of dynamic pore water pressure and stability of soil foundation for the vibration of ocea... Based on unified equivalent harmonic loading on seabed foundation and energy approach suggested by the authors, the development of dynamic pore water pressure and stability of soil foundation for the vibration of ocean gravity structures excited by random wave loading are analysed. It may be seen that the present method for the study of dynamic problems of ocean gravity structure soil foundations is more reasonable and convenient. 展开更多
关键词 ocean gravity structure foundation dynamic pore water pressure dynamic stability unified equi- valent harmonic loading energy approach
下载PDF
Edge detection of gravity anomaly with an improved 3D structure tensor
11
作者 DAI Weiming LI Tonglin +3 位作者 HUANG Danian YUAN Yuan LIU Kai QIAO Zhongkun 《Global Geology》 2018年第2期108-113,共6页
Edge detection plays an important role in geological interpretation of potential field data,which can indicate the subsurface faults,contact,and other tectonic features.A variety of methods have been proposed to detec... Edge detection plays an important role in geological interpretation of potential field data,which can indicate the subsurface faults,contact,and other tectonic features.A variety of methods have been proposed to detect and enhance the edges.3 D structure tensor can well delineate the edges of geological bodies,however,it is sensitive to noise and additional false edges need to be removed artificially.In order to overcome these disadvantages,this paper redefines the 3 D structure tensor with a Gaussian envelop and proposes a new normalized edge detector,which can remove the additional false edges and reduce the influence of noise effectively,and balance the edges of different amplitude anomalies completely.This method has been tested on the synthetic and measured gravity data,showing that the new improved method achievesbetter results and reveals more details. 展开更多
关键词 EDGE detection IMPROVED 3D structure TENSOR gravity ANOMALY
下载PDF
Possible Relations of Cosmic Microwave Background with Gravity and Fine-Structure Constant 被引量:2
12
作者 Qinghua Cui 《Journal of Modern Physics》 CAS 2022年第7期1045-1052,共8页
Gravity is the only force that cannot be explained by the Standard Model (SM), the current best theory describing all the known fundamental particles and their forces. Here we reveal that gravitational force can be pr... Gravity is the only force that cannot be explained by the Standard Model (SM), the current best theory describing all the known fundamental particles and their forces. Here we reveal that gravitational force can be precisely given by mass of objects and microwave background (CMB) radiation. Moreover, using the same strategy we reveal a relation by which CMB can also precisely define fine-structure constant α. 展开更多
关键词 gravity Gravitational Constant Cosmic Microwave Background Fine-structure Constant
下载PDF
Depth Estimation of Geothermal Heat Structures by Euler Deconvolution of Gravity Data at Eburru Area, Kenya
13
作者 Erick Rayora Nyakundi John Githiri Maurice K’Orowe 《Journal of Geoscience and Environment Protection》 2020年第3期148-158,共11页
Gravity survey was done at the Eburru area to estimate the source depth locations and delineate the fault boundaries using 3D Euler deconvolution. Gravity data was collected using CG-5 gravimeter. Gravity data reducti... Gravity survey was done at the Eburru area to estimate the source depth locations and delineate the fault boundaries using 3D Euler deconvolution. Gravity data was collected using CG-5 gravimeter. Gravity data reductions were done by applying drift correction, latitude correction, free air correction, Bouguer correction and terrain correction to the observed raw data to obtain complete bouguer anomaly (CBA). The CBA data was transferred to Oasis montaj software for Euler deconvolution processing. The 3D Euler deconvolution was carried out to determine and estimate the depth of the density bodies. Euler deconvolution locates the gravity anomaly source and estimates its depth from the gravity observation level. Euler deconvolution was preferred to other filtering methods in this study as solutions are only determined over identified analytic signal peaks, the window size varies according to anomaly size and the final solution involves only a few more precise depth estimates. The Euler deconvolution was performed using structural indices of 0.5, 1.0 and 2.0. Results from this analysis indicated that the CBA values in this study area range from gravity values of -272 mGal to -286 mGal and residual Bouguer anomaly amplitude range between -3 mGal and 3.4 mGal. The 0.5, 1.0 and 2.0 structural indices generated five solutions at depth range of 433 m - 2269 m, 801 m - 1433 m and 1170 m - 2246 m respectively occurring almost at the same locations on gravity highs. The deep structures were observed to occur in the northern part of the study area, and interpreted to be dense intruding masses likely to be trapped by the overlying cap rock at these depths. These could be geothermal heat sources that can be exploited to generate geothermal energy. 展开更多
关键词 EULER DECONVOLUTION SOURCE Depth structural Index gravity Data Bouguer ANOMALY GEOTHERMAL Heat SOURCE
下载PDF
Crustal structure of the Qiangtang and Songpan-Ganzi terranes(eastern Tibet) from the 2-D normalized full gradient of gravity anomaly
14
作者 Songbai Xuan Chongyang Shen 《Geodesy and Geodynamics》 CSCD 2022年第6期535-543,共9页
Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian li... Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event. 展开更多
关键词 gravity anomaly Normalized full gradient Crustal structures Anomalous sources Qiangtang and Songpan-Ganzi terranes
下载PDF
Numerical Analysis of a Gravity Substructure for 5 MW Offshore Wind Turbines Due to Soil Conditions
15
作者 Min-Su Park Youn-Ju Jeong Young-Jun You 《Journal of Energy and Power Engineering》 2016年第3期150-158,共9页
In order to increase the gross generation of wind turbines, the size of a tower and a rotor-nacelle becomes larger. In other words, the substructure for offshore wind turbines is strongly influenced by the effect of w... In order to increase the gross generation of wind turbines, the size of a tower and a rotor-nacelle becomes larger. In other words, the substructure for offshore wind turbines is strongly influenced by the effect of wave forces as the size of substructure increases. In addition, since a large offshore wind turbine has a heavy dead load, the reaction forces on the substructure become severe, thus very firm foundations should be required. Therefore, the dynamic soil-structure interaction has to be fully considered and the wave forces acting on substructure accurately calculated. In the present study, ANSYS AQWA is used to evaluate the wave forces. Moreover, the substructure method is applied to evaluate the effect of soil-structure interaction. Using the wave forces and the stiffness and damping matrices obtained from this study, the structural analysis of the gravity substructure is carried out through ANSYS mechanical. The structural behaviors of the strength and deformation are evaluated to investigate an ultimate structural safety and serviceability of gravity substructure for various soil conditions. Also, the modal analysis is carried out to investigate the resonance between the wind turbine and the gravity substructure. 展开更多
关键词 Offshore wind energy gravity substructure suction bucket foundation substructure method structural analysis.
下载PDF
Simultaneous Structure-Coupled Joint Inversion of Gravity and Magnetic Data Based on a Damped Least-Squares Technique
16
作者 Junjie Zhou Chunxiao Xiu Xingdong Zhang 《International Journal of Geosciences》 2015年第2期172-179,共8页
The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional pro... The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional procedure is inefficient due to the truncated singular values decomposition?(SVD) process at each iteration. To improve the algorithm, a technique using damped leastsquares?is adopted to calculate the structural term of model updates, instead of the truncated SVD. This?produces structural coupled density and magnetization images with high efficiency. A so-called?coupling factor is introduced to regulate the tuning of the desired final structural similarity level.?Synthetic examples show that the joint inversion results are internally consistent and achieve?higher?resolution than separated. The acceptable runtime performance of the damped least squares?technique used in joint inversion indicates that it is more suitable for practical use than the truncated SVD method. 展开更多
关键词 structure-Coupled Joint INVERSION DAMPED LEAST-SQUARES Coupling Factor gravity and Magnetic Data
下载PDF
A New Unified Electro-Gravity Theory for the Electron, and the Fundamental Origin of the Fine Structure Constant and the Casimir Effect
17
作者 Nirod K. Das 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第1期66-87,共22页
A rigorous model for the electron is presented by generalizing the Coulomb’s Law or Gauss’s Law of electrostatics, using a unified theory of electricity and gravity. The permittivity of the free-space is allowed to ... A rigorous model for the electron is presented by generalizing the Coulomb’s Law or Gauss’s Law of electrostatics, using a unified theory of electricity and gravity. The permittivity of the free-space is allowed to be variable, dependent on the energy density associated with the electric field at a given location, employing generalized concepts of gravity and mass/energy density. The electric field becomes a non-linear function of the source charge, where the concept of the energy density needs to be properly defined. Stable solutions are derived for a spherically symmetric, surface-charge distribution of an elementary charge. This is implemented by assuming that the gravitational field and its equivalent permittivity function is proportional to the energy density, as a simple first-order approximation, with the constant of proportionality, referred to as the Unified Electro-Gravity (UEG) constant. The stable solution with the lowest mass/energy is assumed to represent a “static” electron without any spin. Further, assuming that the mass/energy of a static electron is half of the total mass/energy of an electron including its spin contribution, the required UEG constant is estimated. More fundamentally, the lowest stable mass of a static elementary charged particle, its associated classical radius, and the UEG constant are related to each other by a dimensionless constant, independent of any specific value of the charge or mass of the particle. This dimensionless constant is numerologically found to be closely related to the fine structure constant. This possible origin of the fine structure constant is further strengthened by applying the proposed theory to successfully model the Casimir effect, from which approximately the same above relationship between the UEG constant, electron’s mass and classical radius, and the fine structure constant, emerges. 展开更多
关键词 Electron structure Fine-structure Constant Casimir Effect Unified Electro-gravity Theory
下载PDF
Analysis of the Structure and Propagation of a Simulated Squall Line on 14 June 2009 被引量:8
18
作者 LIU Lu RAN Lingkun SUN Xiaogong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第8期1049-1062,共14页
A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analy... A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analysis of the structural features and propagation mechanisms of the squall line was conducted. The dynamic and thermodynamic structural charac- teristics and their causes were analyzed in detail. Unbalanced flows were found to play a key role in initiating gravity waves during the squall line's development. The spread and development of the gravity waves were sustained by convection in the wave-CISK process. The squall line's propagation and development mainly relied on the combined effect of gravity waves at the midlevel and cold outflow along the gust front. New cells were continuously forced by the cold pool outflow and were enhanced and lifted by the intense upward motion. At a particular phase, the new cells merged with the updraft of the gravity waves, leading to an intense updraft that strengthened the squall line. 展开更多
关键词 squall line structural feature gravity wave cold pool outflow
下载PDF
Crustal structure beneath Cameroon from EGM2008 被引量:3
19
作者 Ngatchou Heutchi Evariste Liu Genyou +4 位作者 Tabod Charles Tabod Kamguia Joseph Nguiya Severin Tiedeu Alain KE Xiaoping 《Geodesy and Geodynamics》 2014年第1期1-10,共10页
We used the Earth Gravitational Model (EGM2008) data sets to analyze the regional gravity anoma- lies and to study the underground structures in Cameroon. We first created a high-resolution Free-Air anomaly database... We used the Earth Gravitational Model (EGM2008) data sets to analyze the regional gravity anoma- lies and to study the underground structures in Cameroon. We first created a high-resolution Free-Air anomaly database, then corrected the gravity field of the topographic effect by using ETOPO1 DEM with a resolution of 0.01~ to obtain the Bouguer anomaly, then applied a multi-scale wavelet-analysis technique to separate the gravity-field components into different parts of shallow-to-deep origins, and finally used the logarithmic power spectrum technique to obtain detailed images and corresponding source depths as well as certain lateral inho- mogeneity of structure density. The anomalies of shallow origin show successive elongated gravity "highs" and "lows" attributable to subsurface Tertiary and lower Cretaceous undulations. Our results are in good agreement with previous investigations. 展开更多
关键词 Cameroon EGM2008 gravity anomalies wavelet transform power spectrum crustal structure
下载PDF
Nonlinear finite-element-based structural system failure probability analysis methodology for gravity dams considering correlated failure modes 被引量:4
20
作者 胡江 马福恒 吴素华 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期178-189,共12页
The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathe... The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations. 展开更多
关键词 gravity dam structural system failure probability nonlinear finite element response surface method computational platform
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部