期刊文献+
共找到14,856篇文章
< 1 2 250 >
每页显示 20 50 100
The influences of canopy temperature measuring on the derived crop water stress index
1
作者 WANG Hongxi LI Fei +4 位作者 SHEN Hongtao LI Mengyu YIN Gongchao FANG Qin SHAO Liwei 《中国生态农业学报(中英文)》 CAS CSCD 北大核心 2024年第9期1503-1519,共17页
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the... Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management. 展开更多
关键词 Canopy temperature Measuring time Measuring height and direction Crop water stress index
下载PDF
Dynamics of Potable Well Water Quality in Key Mining Chiefdoms in Kono District, Eastern Sierra Leone
2
作者 Richard Tamba Simbo Alhaji Brima Gogra +1 位作者 Yahaya Kudus Kawa Juana Paul Moiwo 《Open Journal of Applied Sciences》 2024年第7期1927-1943,共17页
Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasi... Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country. 展开更多
关键词 temperature Total Dissolved Solids TURBIDITY Electrical Conductivity water Quality
下载PDF
Seasonal constraint of dynamic water temperature on riverine dissolved inorganic nitrogen transport in land surface modeling
3
作者 Shuang Liu Kaiheng Hu +1 位作者 Zhenghui Xie Yan Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期35-40,共6页
水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变... 水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变化对河流DIN通量变化的影响.结果表明:在考虑水温动态变化后,在30°N和30°S之间, DIN通量年振幅减小5%–25%.在中国东部地区,水温动态变化使河流DIN通量在夏季减少1%–3%,在冬季增加1%–5%,对DIN通量具有明显的季节性约束作用,表明动态水温的表达在河流DIN输送模拟中的重要性. 展开更多
关键词 陆面模拟 河流氮输送 水温变化 季节变化 全球尺度
下载PDF
Evaluation of surface temperature and pressure derived from MERRA-2 and ERA5 reanalysis datasets and their applications in hourly GNSS precipitable water vapor retrieval over China 被引量:2
4
作者 Liangke Huang Xiaoyang Fang +3 位作者 Tengxu Zhang Haoyu Wang Lei Cui Lilong Liu 《Geodesy and Geodynamics》 CSCD 2023年第2期111-120,共10页
Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range... Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China. 展开更多
关键词 temperature and pressure Global navigation satellite system Precipitable water vapor MERRA-2 ERA5
下载PDF
Water temperature induced interannual variation in spawning of Japanese Spanish mackerel Scomberomorus niphonius in the northern Yellow Sea
5
作者 Mengzhen PAN Chi ZHANG +1 位作者 Yongjun TIAN Qinghuan ZHU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1620-1627,共8页
Japanese Spanish mackerel Scomberomorus niphonius is a pelagic,neritic species that occurs in the Yellow Sea in high commercial value.The spawning period of this fast-growing species is controlled by water temperature... Japanese Spanish mackerel Scomberomorus niphonius is a pelagic,neritic species that occurs in the Yellow Sea in high commercial value.The spawning period of this fast-growing species is controlled by water temperature.Based on microstructural analysis of otoliths from 145 young-of-the-year(YoY)S.niphonius collected by trawl in 2017,2018,and 2020,and the temporal variation in the spawning period in the northern Yellow Sea,and its relationship to water temperature were examined.We found that the spawning lasted from late April to late June but differed in year:in 2017 it occurred from April 23 to June 1 and peaked in early May,in 2018 it extended later from May 7 to June 29,and in 2020 from May 6 to June 22 and peaked later from late May to mid-June.The highest temperature in 2017 corresponds with the earliest end of the spawning period and a lower growing degree-day(GDD,℃·day)of 383℃·day.In 2018,slower warming corresponds with a longer spawning period,and a GDD spawning period of 506℃·day.Rapid warming in late 2020 corresponds with a spawning peak,and a GDD spawning temperature of 448℃·day.Despite differences in spawning period,the water temperature when spawning commenced was 10-12℃.Therefore,water temperature is the major determinant of the spawning period,affecting both the starting and the ending of spawning.This study improved our understanding of the spawning dynamics and environmental adaptation of S.niphonius,and how these might change in environments subject to increased warming. 展开更多
关键词 otolith microstructure Scomberomorus niphonius spawning period yellow sea water temperature
下载PDF
Coseismic effects of water temperature based on digital observation from Tayuan well,Beijing 被引量:1
6
作者 杨竹转 邓志辉 +3 位作者 陶京玲 谷圆珠 王志敏 刘成龙 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第2期212-223,共12页
On the basis of digital records from Tayuan well, we study coseismic effects of water temperature caused by remote earthquakes. The records show that the water temperature changes are consistently following the proces... On the basis of digital records from Tayuan well, we study coseismic effects of water temperature caused by remote earthquakes. The records show that the water temperature changes are consistently following the process of drop-rise-recovery regardless of focal mechanism or epicentral directions. The step amplitude of water temperature increases with the increase of earthquake magnitude, and decreases with the decrease of epicentral distances. They have rather well correlation. Water temperature rising after earthquake is influenced by water level variations. Fi- nally, the mechanisms of coseismic effects of water temperature have been discussed. Preliminary study shows that accelerated convection and mixing of different temperature water in virtue of seismic wave are the main causes of water temperature drops. Seismic wave accelerates water convection, which causes warm water to move up from deeper part of the well and cold water to go down from the upper part. Temperature probe will detect water temperature drops at early stage. After the occurrence of earthquake, as the fluctuation of water level gradually quiets down, water temperature near the probe begins to rise. 展开更多
关键词 Tayuan well water temperature EARTHQUAKE coseismic effect
下载PDF
Effects of soil temperature and soil water content on soil respiration in three forest types in Changbai Mountain 被引量:9
7
作者 王淼 李秋荣 +1 位作者 肖冬梅 董百丽 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期113-118,i002,共7页
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni... Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan 展开更多
关键词 Soil temperature Soil water content Soil respiration The typical forest ecosystem in Changbai Mountain
下载PDF
Changes of Water Temperature and Harmful Algal Bloom in the Daya Bay in the Northern South China Sea 被引量:7
8
作者 余景 唐丹玲 +2 位作者 王素芬 练建生 王友绍 《Marine Science Bulletin》 CAS 2007年第2期25-33,共9页
Economic development around the Daya Bay, China has profoundly affected the marine environment in the bay area in recent years, particularly since the operation of Daya Bay Nuclear Power Station (DNPS) in 1994. This... Economic development around the Daya Bay, China has profoundly affected the marine environment in the bay area in recent years, particularly since the operation of Daya Bay Nuclear Power Station (DNPS) in 1994. This study analyzed the changes of water temperature and harmful algal blooms (HABs) for two periods: 1983-1993 and 1994-2004, using in situ and satellite data. Results showed that yearly mean surface water temperature (SWT) and Chl-a concentration (Chl-a) increased by 1.1 ℃ and 1.9 mg/m^3, respectively, after 1994. The monthly occurrence of HAB was found to have increased also. HABs appeared only in spring and autumn before 1994, but occurred all the year round after 1994. SWT, Chl-a and HABs all increased significantly in May. Those changes were associated with environmental changes in this area, such as thermal discharge from the DNPS and enhancement of eutrophication from human activities around the Daya Bay. 展开更多
关键词 water temperature Harmful Algal Bloom Chlorophyll a nuclear power station Daya Bay China
下载PDF
Mechanism of Nutrient Silicon and Water Temperature Influences on Phytoplankton Growth 被引量:3
9
作者 杨东方 高振会 +2 位作者 孙培艳 李梅 曲延峰 《Marine Science Bulletin》 CAS 2006年第2期49-59,共11页
This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of ... This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem. 展开更多
关键词 SILICON water temperature phytoplankton growth assemblage structure mechanism
下载PDF
Effects of thawing-induced softening on fracture behaviors of frozen rock 被引量:1
10
作者 Ting Wang Hailiang Jia +2 位作者 Qiang Sun Xianjun Tan Liyun Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期979-989,共11页
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ... Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks. 展开更多
关键词 Frozen sandstone Different thawing temperature Fracture toughness Microcrack propagation process Unfrozen water content
下载PDF
High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells 被引量:10
11
作者 Wang Fuhua Tan Xuechao +3 位作者 Wang Ruihe Sun Mingbo Wang Li Liu Jianghua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期354-362,共9页
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines... To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site. 展开更多
关键词 High-density water-based drilling fluid rheological behavior CLAY high temperature high pressure linear fitting rheological model mathematical model
下载PDF
A Preliminary Study on Mechanisms of Well Water Temperature Responses Based on the Modes of Stress Loading
12
作者 Chen Daqing Wan Yongfang 《Earthquake Research in China》 2011年第4期477-485,共9页
Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion... Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms. 展开更多
关键词 water temperature in well Stress loading Response mechanism
下载PDF
Characteristics and Trend Variation of Light,Temperature and Water Resources in Dongling District of Shenyang Province in Recent 49 Years
13
作者 刁军 董晓明 +1 位作者 刘凤芝 贺明慧 《Meteorological and Environmental Research》 CAS 2010年第10期33-35,38,共4页
The meteorological data of light,temperature and water during 1961-2009 were selected to analyze the trend variation of climatic resources and provide the basis for developing and utilizing local climate resources.The... The meteorological data of light,temperature and water during 1961-2009 were selected to analyze the trend variation of climatic resources and provide the basis for developing and utilizing local climate resources.The results indicated that light resource presented the decreasing tendency in Dongling District,annual radiation reduced by 528 MJ/m2,and annual sunshine duration decreased by 333 h.The heat resource presented the increasing tendency,the average annual temperature increased by 1.04 ℃,and active accumulated temperature increased by 228 ℃.The general trend of annual precipitation declined slightly,precipitation resource during every age changed slightly and would tend to be stable. 展开更多
关键词 Light temperature and water RESOURCE Tendency rate Trend variation Dongling District China
下载PDF
Impact of Initial Soil Conditions on Soil Hydrothermal and Surface Energy Fluxes in the Permafrost Region of the Tibetan Plateau
14
作者 Siqiong LUO Zihang CHEN +3 位作者 Jingyuan WANG Tonghua WU Yao XIAO Yongping QIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期717-736,共20页
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an... Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%. 展开更多
关键词 initial soil conditions soil temperature soil liquid water soil ice surface energy fluxes PERMAFROST
下载PDF
Control system design for a pressure-tube-type supercritical water-cooled nuclear reactor via a higher order sliding mode method
15
作者 M.Hajipour G.R.Ansarifar 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期145-154,共10页
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor... Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering. 展开更多
关键词 Supercritical water nuclear reactor Higher order sliding mode controller Steam temperature Steam pressure Point kinetics model
下载PDF
Numerical Simulation Analysis of the Transformer Fire Extinguishing Process with a High-Pressure Water Mist System under Different Conditions 被引量:1
16
作者 Haowei Yao Youxin Li +7 位作者 Kefeng Lv Dong Wang Jinguang Zhang Zhenyu Zhan Zhenyu Wang Huaitao Song Xiaoge Wei Hengjie Qin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期733-747,共15页
To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fir... To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread. 展开更多
关键词 Transformer fire high-pressure water mist temperature flue gas concentration
下载PDF
Review on the Impact of Climate Change on Great Lakes Region’s Agriculture and Water Resources
17
作者 Zeyu Shen 《Journal of Geoscience and Environment Protection》 2024年第7期165-176,共12页
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol... This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change. 展开更多
关键词 Climate Change Midwest USA Agricultural Impacts Urban Runoff Sustainable Practices Precipitation Patterns temperature increase Greenhouse Gas Emissions Soil Erosion water Management
下载PDF
Spatio-temporal variability of terrestrial water storage in the Yangtze River Basin: Response to climate changes
18
作者 Yaoguo Wang Zhaoyang Sun +2 位作者 Qiwen Wu Jun Fang Wei Jia 《Geodesy and Geodynamics》 EI CSCD 2023年第3期201-211,共11页
The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distributi... The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB. 展开更多
关键词 Yangtze river basin Terrestrial water storage GRACE Time-varying gravity field
下载PDF
Irrigating with cooler water does not reverse high temperature impact on grain yield and quality in hybrid rice
19
作者 Wanju Shi Xinzhen Zhang +8 位作者 Juan Yang Somayanda M.Impa De Wang Yusha Lai Zijin Yang Hang Xu Jinshui Wu Jianhua Zhang S.V.Krishna Jagadish 《The Crop Journal》 SCIE CSCD 2023年第3期904-913,共10页
Rice grain yield and quality are negatively impacted by high temperature stress.Irrigation water temperature significantly affects rice growth and development,thus influencing yield and quality.The role of cooler irri... Rice grain yield and quality are negatively impacted by high temperature stress.Irrigation water temperature significantly affects rice growth and development,thus influencing yield and quality.The role of cooler irrigation water in counteracting high temperature induced damages in rice grain yield and quality are not explored.Hence,in the present study two rice hybrids,Liangyoupeijiu(LYPJ)and IIyou 602(IIY602)were exposed to heat stress and irrigated with water having different temperatures in a splitsplit plot experimental design.The stress was imposed starting from heading until maturity under field-based heat tents,over two consecutive years.The maximum day temperature inside the heat tents was set at 38℃.For the irrigation treatments,two different water sources were used including belowground water with cooler water temperature and pond water with relatively higher water temperature.Daytime mean temperatures in the heat tents were increased by 1.2–2.0℃ across two years,while nighttime temperature remained similar at both within and outside the heat tents.Cooler belowground water irrigation did have little effect on air temperature at the canopy level but decreased soil temperature(0.2–1.4℃)especially under control.Heat stress significantly reduced grain yield(33%to 43%),panicles m^(-2)(9%to 10%),spikelets m^(-2)(15%to 22%),grain-filling percentage(13%to 26%)and 1000-grain weight(3%to 5%).Heat stress significantly increased chalkiness and protein content and decreased grain length and amylose content.Grain yield was negatively related to air temperature at the canopy level and soil temperature.Whereas grain quality parameters like chalkiness recorded a significantly positive association with both air and soil temperatures.Irrigating with cooler belowground water reduced the negative effect of heat stress on grain yield by 8.8%in LYPJ,while the same effect was not seen in IIY602,indicating cultivar differences in their response to irrigation water temperature.Our findings reveal that irrigating with cooler belowground water would not significantly mitigate yield loss or improve grain quality under realistic field condition.The outcome of this study adds to the scientific knowledge in understanding the interaction between heat stress and irrigation as a mitigation tool.Irrigation water temperature regulation at the rhizosphere was unable to counteract heat stress damages in rice and hence a more integrated management and genetic options at canopy levels should be explored in the future. 展开更多
关键词 Grain quality Grain yield Hybrid rice High temperature IRRIGATION water management
下载PDF
Design and analysis of a high loss density motor cooling system with water cold plates
20
作者 Xin Zhao Haojie Cui +2 位作者 Yun Teng Zhe Chen Guangwei Liu 《Global Energy Interconnection》 EI CSCD 2023年第3期343-354,共12页
Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect o... Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect of the cooling water flow,thickness of the plate,and motor loss density on the cooling effect of the water cold plate were studied.To compare the cooling performance of water cold plate and outer spiral water jacket cooling structures,a high-speed permanent magnet motor with a high loss density was used to establish two motor models with the two cooling structures.Consequently,the cooling effects of the two models were analyzed using the finite element method under the same loss density,coolant flow,and main dimensions.The results were as follows.(1)The maximum and average temperatures of the water cold plate structure were reduced by 25.5%and 30.5%,respectively,compared to that of the outer spiral water jacket motor;(2)Compared with the outer spiral water jacket structure,the water cold plate structure can reduce the overall mass and volume of the motor.Considering a 100 kW high-speed permanent magnet motor as an example,a water cold plate cooling system was designed,and the temperature distribution is analyzed,with the result indicating that the cooling structure satisfied the cooling requirements of the high loss density motor. 展开更多
关键词 Cooling system design High loss density motor water cold plate temperature field analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部