期刊文献+
共找到22,081篇文章
< 1 2 250 >
每页显示 20 50 100
Dependence of Gravity Induced Absorption Changes on the Earth’s Magnetic Field as Measured during Parabolic Flight Campaigns
1
作者 Werner Schmidt 《Journal of Modern Physics》 2013年第11期1546-1553,共8页
Various spectroscopic experiments performed on the AIRBUS ZERO G—located in Bordeaux, France—in the years 2002 to 2012 exhibit minute optical reflection/absorption changes (GIACs) as a result of gravitational change... Various spectroscopic experiments performed on the AIRBUS ZERO G—located in Bordeaux, France—in the years 2002 to 2012 exhibit minute optical reflection/absorption changes (GIACs) as a result of gravitational changes between 0 and 1.8 g in various biological species such as maize, oats, Arabidopsis and particularly Phycomyces sporangiophores. During a flight day, the AIRBUS ZERO G conducts 31 parabolas, each of which lasts about three minutes including a period of 22 s of weightlessness. So far, we participated in 11 parabolic flight campaigns including more than 1000 parabolas performing various kinds of experiments. During our campaigns, we observed an unexplainable variability of the measuring signals (GIACs). Using GPS-positioning systems and three dimensional magnetic field sensors, these finally were traced back to the changing earth’s magnetic field associated with the various flight directions. This is the first time that the interaction of gravity and the Earth’ magnetic field in the primary induction process in living system has been observed. 展开更多
关键词 MDWS(Micro Dual Wavelength Spectrometer) GIAC(gravity Induced Absorption Change) AIRBUS-300-ZERO-G Parabolic Flight Micro-and Hypergravity Three Dimensional Earth’s magnetic field Global Positioning System(GPS) Google Earth
下载PDF
Characteristics of gravity and magnetic fields and deep structural responses in the southern part of the Kyushu-Palau Ridge
2
作者 Zhen Lin Wen-chao Lü +7 位作者 Zi-ying Xu Peng-bo Qin Hui-qiang Yao Xiao Xiao Xin-he Zhang Chu-peng Yang Xiang-yu Zhang Jia-le Chen 《China Geology》 2021年第4期553-570,共18页
The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is... The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR. 展开更多
关键词 Kyushu-Palau Ridge(KPR) Characteristics of gravity and magnetic fields Mindanao fault Moho depth Crust attribute Philippine Sea Plate Marine scientific survey
下载PDF
Gravity and magnetic field characteristics and regional ore prospecting of the Yili ancient continent, West Tianshan, Xinjiang Uygur Autonomous Region, China 被引量:2
3
作者 Xue-zhong Yu Yi-yuan He +3 位作者 Meng Wang Jian Zhang Xuan-jie Zhang Zheng-guo Fan 《China Geology》 2020年第1期104-112,共9页
Gold,iron,copper,lead-zinc and other mineral exploration in West Tianshan,Xinjiang Uygur Autonomous Region,has made remarkable progress in recent years.However,due to the dispute on the tectonic division of West Tians... Gold,iron,copper,lead-zinc and other mineral exploration in West Tianshan,Xinjiang Uygur Autonomous Region,has made remarkable progress in recent years.However,due to the dispute on the tectonic division of West Tianshan,the ore-controlling factors and the regional metallogenic laws are controversial.The authors analyze regional gravity data and notice that the high-value region corresponds to the Yili ancient continent,thus the southeastern boundary of the Yili ancient continent is delineated.Comparative analysis of gravity,aeromagnetic and geologic data reveals that the Tulasu basin,where some medium to large epithermal gold deposits locate,lies above the Yili ancient continent;the Yili Carboniferous-Permian rift extends in E-W direction,numbers of copper deposits have been found in the mid-west section of the rift which lies above the Yili ancient continent,whereas few copper deposits have been discovered in the east section which is outside the Yili ancient continent.Accordingly,the Yili ancient continent may be rich in gold,copper and other metal elements;the metal-bearing hydrothermal solution moves up with the activity of magmatism,and deposits in the favorable places(the Tulasu basin and the Yili Carboniferous-Permian rift),forming numerous small and medium gold,copper deposits,as well as some large and super-large gold deposits.Therefore,the tectonic-magmatic hydrothermal zone above the Yili ancient continent should be the prospective area for epithermal gold and copper polymetallic deposits. 展开更多
关键词 Yili ancient continent Yili Carboniferous-Permian rift gravity field Epithermal gold deposit Copper polymetallic deposit Geophysical and remote sensing survey engineering Xinjiang Uygur Autonomous Region China
下载PDF
Influence of upstream solar wind on magnetic field distribution in the Martian nightside ionosphere
4
作者 JiaWei Gao ZhaoJin Rong +3 位作者 Qi Zhang Anna Mittelholz Chi Zhang Yong Wei 《Earth and Planetary Physics》 EI CAS CSCD 2024年第5期728-741,共14页
Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of ups... Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field. 展开更多
关键词 Martian magnetic field external magnetic field upstream solar wind drivers IMF penetration altitude magnetic field activity indices
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
5
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
下载PDF
Optimization of magnetic field design for Hall thrusters based on a genetic algorithm
6
作者 谭睿 杭观荣 王平阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期82-92,共11页
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er... Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster. 展开更多
关键词 magnetic field design genetic algorithm divergence angle erosion of discharge channel convergent magnetic field
下载PDF
Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin-Puplett interferometer polarimeter
7
作者 张雅芃 姚嘉文 +2 位作者 刘正东 马作霖 仲佳勇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期129-134,共6页
Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup... Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength. 展开更多
关键词 laser-plasma experiment POLARIMETER self-generated magnetic field magnetic reconnection
下载PDF
Reconstruction of poloidal magnetic field profiles in field-reversed configurations with machine learning in laser-driven ion-beam trace probe
8
作者 徐栩涛 徐田超 +4 位作者 肖池阶 张祖煜 何任川 袁瑞鑫 许平 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期83-87,共5页
The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around... The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around the core region.The laser-driven ion-beam trace probe(LITP)has been proven to diagnose the B_(p)profile in FRCs recently,whereas the existing iterative reconstruction approach cannot handle the measurement errors well.In this work,the machine learning approach,a fast-growing and powerful technology in automation and control,is applied to B_(p)reconstruction in FRCs based on LITP principles and it has a better performance than the previous approach.The machine learning approach achieves a more accurate reconstruction of B_(p)profile when 20%detector errors are considered,15%B_(p)fluctuation is introduced and the size of the detector is remarkably reduced.Therefore,machine learning could be a powerful support for LITP diagnosis of the magnetic field in magnetic confinement fusion devices. 展开更多
关键词 FRC LITP poloidal magnetic field diagnostics machine learning
下载PDF
Vector magnetometry in zero bias magnetic field using nitrogen-vacancy ensembles
9
作者 Chunxing Li Fa-Zhan Shi +1 位作者 Jingwei Zhou Peng-Fei Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期21-29,共9页
The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with ... The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatialresolution.However,a bias magnetic field is necessary to fully separate the resonance lines of optically detected magneticresonance(ODMR)spectrum of NV ensembles.This brings disturbances in samples being detected and limits the rangeof application.Here,we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles.By utilizing the anisotropy property of fluorescence excited from NV centers,we analyzed the ODMR spectrum of NVensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical modeland reconstructed the magnetic field vector.The minimum magnetic field modulus that can be resolved accurately is downto~0.64 G theoretically depending on the ODMR spectral line width(1.8 MHz),and~2 G experimentally due to noisesin fluorescence signals and errors in calibration.By using 13C purified and low nitrogen concentration diamond combinedwith improving calibration of unknown parameters,the ODMR spectral line width can be further decreased below 0.5 MHz,corresponding to~0.18 G minimum resolvable magnetic field modulus. 展开更多
关键词 vector magnetometry NV ensembles optically detected magnetic resonance(ODMR) zero bias magnetic field
下载PDF
Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
10
作者 张丽萍 孙宗耀 +1 位作者 李佳妮 苏俊燕 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期683-689,共7页
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w... The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions. 展开更多
关键词 graphene field-effect transistors external magnetic field radiation frequency instability increment
下载PDF
Effect of antenna helicity on discharge characteristics of helicon plasma under a divergent magnetic field
11
作者 孙萌 徐晓芳 +3 位作者 王陈文 尹贤轶 陈强 张海宝 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期50-59,共10页
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod... The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism. 展开更多
关键词 helicon plasma non-uniform magnetic field helical antenna blue core discharge mechanism
下载PDF
Acetaminophen overdose-induced acute liver injury can be alleviated by static magnetic field
12
作者 Han-Xiao Chen Xin-Yu Wang +11 位作者 Biao Yu Chuan-Lin Feng Guo-Feng Cheng Lei Zhang Jun-Jun Wang Ying Wang Ruo-Wen Guo Xin-Miao Ji Wen-Jing Xie Wei-Li Chen Chao Song Xin Zhang 《Zoological Research》 SCIE CSCD 2024年第3期478-490,共13页
Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacolog... Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses. 展开更多
关键词 ACETAMINOPHEN Acute liver injury Static magnetic fields Oxidative stress DNA synthesis
下载PDF
Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
13
作者 严睿 邹德滨 +9 位作者 赵娜 杨晓虎 蒋祥瑞 胡理想 徐新荣 周泓宇 余同普 卓红斌 邵福球 银燕 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期511-517,共7页
Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial str... Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse. 展开更多
关键词 self-generated magnetic field laser solid-target interaction micro-structured plasma grating
下载PDF
Effects of vacuum magnetic field region on the compact torus trajectory in a tokamak plasma
14
作者 董期龙 张洁 +28 位作者 兰涛 肖持进 庄革 陈晨 周永康 吴捷 龙婷 聂林 卢鹏程 王天雄 邬佳仁 邓鹏 汪兴康 柏泽琪 黄玉华 李杰 薛雷 阿迪力江 毛文哲 周楚 刘阿娣 吴征威 谢锦林 丁卫星 刘万东 陈伟 钟武律 许敏 段旭如 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期23-39,共17页
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok... The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters. 展开更多
关键词 compact torus central fueling vacuum magnetic field region penetration mechanism optimization parameters
下载PDF
Suppression of stimulated Brillouin and Raman scatterings using an alternating frequency laser and transverse magnetic fields
15
作者 程瑞锦 李晓旬 +11 位作者 王清 刘德基 黄卓明 吕帅宇 周远志 张舒童 李雪铭 陈祖杰 王强 刘占军 曹莉华 郑春阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期545-553,共9页
A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow... A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion. 展开更多
关键词 stimulated Brillouin scattering stimulated Raman scattering alternating frequency laser transverse magnetic field
下载PDF
Effect of interplanetary magnetic field B_(x)on the polar electrojets as observed by CHAMP and Swarm satellites
16
作者 Hui Wang ChengZhi Wang YunFang Zhong 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期382-390,共9页
Based on 16 years of magnetic field observations from CHAMP and Swarm satellites,this study investigates the influence of the Interplanetary Magnetic Field(IMF)Bx component on the location and peak current density of ... Based on 16 years of magnetic field observations from CHAMP and Swarm satellites,this study investigates the influence of the Interplanetary Magnetic Field(IMF)Bx component on the location and peak current density of the polar electrojets(PEJs).We find that the IMF Bx displays obvious local time,seasonal,and hemispherical effects on the PEJs,as follows:(1)Compared to other local times,its influence is weakest at dawn and dusk.(2)In the midnight sectors of both hemispheres,the IMF Bx tends to amplify the westward PEJ when it is<0 in the Northern Hemisphere and when it is>0 in the Southern Hemisphere;this effect is relatively stronger in the local winter hemisphere.(3)At noontime,the IMF Bx intensifies the eastward current when it is<0 in the Northern Hemisphere;in the Southern Hemisphere when it is>0,it reduces the westward current;this effect is notably more prominent in the local summer hemisphere.(4)Moreover,the noontime eastward current shifts towards higher latitudes,while the midnight westward current migrates towards lower latitudes when IMF Bx is<0 in the Northern Hemisphere and when it is>0 in the Southern Hemisphere. 展开更多
关键词 polar electrojet interplanetary magnetic field Bx local time asymmetry hemispheric difference
下载PDF
Poloidal magnetic field reconstruction by laser-driven ion-beam trace probe in spherical tokamak
17
作者 Zuyu ZHANG Tianchao XU +4 位作者 Chijie XIAO Xianli HUANG Renchuan HE Ruixin YUAN Xiaoyi YANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期58-64,共7页
The poloidal magnetic field( B_(p)) plays a critical role in plasma equilibrium, confinement and transport of magnetic confinement devices. Multiple diagnostic methods are needed to complement each other to obtain a m... The poloidal magnetic field( B_(p)) plays a critical role in plasma equilibrium, confinement and transport of magnetic confinement devices. Multiple diagnostic methods are needed to complement each other to obtain a more accurate B_(p) profile. Recently, the laser-driven ion-beam trace probe(LITP) has been proposed as a promising tool for diagnosing B_(p) and radial electric field( E_(r)) profiles in tokamaks [Yang X Y et al 2014 Rev. Sci. Instrum. 85 11E429]. The spherical tokamak(ST) is a promising compact device with high plasma beta and naturally large elongation. However, when applying LITP to diagnosing B_(p) in STs, the larger B_(p) invalidates the linear reconstruction relationship for conventional tokamaks, necessitating the development of a nonlinear reconstruction principle tailored to STs. This novel approach employs an iterative reconstruction method based on Newton's method to solve the nonlinear equation. Subsequently,a simulation model to reconstruct the B_(p) profile of STs is developed and the experimental setup of LITP is designed for EXL-50, a middle-sized ST. Simulation results of the reconstruction show that the relative errors of B_(p) reconstruction are mostly below 5%. Moreover, even with 5 mm measurement error on beam traces or 1 cm flux surface shape error, the average relative error of reconstruction remains below 15%, initially demonstrating the robustness of LITP in diagnosing B_(p) profiles in STs. 展开更多
关键词 laser-driven ion-beam trace probe poloidal magnetic field diagnostic iterative reconstruction
下载PDF
Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
18
作者 吴明兴 谢楷 +3 位作者 刘艳 徐晗 张宝 田得阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期519-530,共12页
A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic... A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma. 展开更多
关键词 low-frequency alternating magnetic field phase shift shock-tube plasma diagnosis electron density collision frequency
下载PDF
Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer’s disease mice
19
作者 Ruo-Wen Guo Wen-Jing Xie +5 位作者 Biao Yu Chao Song Xin-Miao Ji Xin-Yu Wang Mei Zhang Xin Zhang 《Zoological Research》 SCIE CSCD 2024年第4期924-936,共13页
Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation... Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment. 展开更多
关键词 lzheimer’s disease Rotating magnetic field Amyloid-β Cognitive function Alzheimer’s disease animal models
下载PDF
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
20
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部