Computing moments on images is very important in the fields of image processing and pattern recognition. The non-symmetry and anti-packing model (NAM) is a general pattern representation model that has been develope...Computing moments on images is very important in the fields of image processing and pattern recognition. The non-symmetry and anti-packing model (NAM) is a general pattern representation model that has been developed to help design some efficient image representation methods. In this paper, inspired by the idea of computing moments based on the S-Tree coding (STC) representation and by using the NAM and extended shading (NAMES) approach, we propose a fast algorithm for computing lower order moments based on the NAMES representation, which takes O(N) time where N is the number of NAM blocks. By taking three idiomatic standard gray images 'Lena', 'F16', and 'Peppers' in tile field of image processing as typical test objects, and by comparing our proposed algorithm with the conventional algorithm and the popular STC representation algorithm for computing the lower order moments, the theoretical and experimental results presented in this paper show that the average execution time improvement ratios of the proposed NAMES approach over the STC approach, and also the conventional approach are 26.63%, and 82.57% respectively while maintaining the image quality.展开更多
Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based ...Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.展开更多
Steganography is the art of hiding a secret message in some kind of media. The main goal is not to hide only the secret message but also the existence of communication and secure data transferring. There are a lot of ...Steganography is the art of hiding a secret message in some kind of media. The main goal is not to hide only the secret message but also the existence of communication and secure data transferring. There are a lot of methods that were utilized for building the steganography;such as LSB (Least Significant Bits), Discrete Cosine Transform (DCT), Discrete Fourier Transform, Spread-Spectrum Encoding, and Perceptual Masking, but all of them are challenged by steganalysis. This paper proposes a new technique for Gray Scale Image Steganography that uses the idea of image segmentation and LSB to deal with such problem. The proposed method deals with different types of images by converting them to a virtual gray scale 24 bitmaps, finds out the possible segments inside image and then computes the possible areas for each segment with boundaries. Any intruder trying to find the transformed image will not be able to understand it without the correct knowledge about the transformation process. The knowledge is represented by the key of image segmentation, key of data distribution inside segment (area selection), key of mapping within each area segment, key agreement of cryptography method, key of secret message length and key of message extension. Our method is distinguishing oneself by one master key to generate the area selection key, pixels selection keys and cryptography key. Thus, the existence of secret message is hard to be detected by the steganalysis. Experiment results show that the proposed technique satisfied the main requirements of steganography;visual appearance, modification rate, capacity, undetectability, and robustness against extraction (security). Also it achieved the maximum capacity of cover image with a modification rate equals 0.04 and visual quality for stego-image comparable to cover image.展开更多
A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. ...A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. Then, the best-matched one for every range block is obtained by analysing the relation between their coefficients. Experimental results show that the proposed method can shorten encoding time markedly, while the retrieved image quality is still acceptable. In the decoding step, a kind of simple line fitting on block boundaries is used to reduce blocking effects. At the same time, the proposed method can also achieve a high compression ratio.展开更多
In this paper, white light digital image analysis in frequency domination area for measuring 3D displacement is put forward. The measuring system has the characteristics of whole-field, non-contact and omni-bearing me...In this paper, white light digital image analysis in frequency domination area for measuring 3D displacement is put forward. The measuring system has the characteristics of whole-field, non-contact and omni-bearing measurement. It is simple and the coherent light is not demanded. Gray images before and after deformation are recorded using two CCDs at two different shooting angles, then digitalized and analyzed by frequency domination correlation arithmetic. The 2D displacement obtained is used to formulate 3D displacement via mathematical transformation. The experimental plate is 40,mm in length, 30,mm in width and 10 mm in height. The definite displacement is given using a 3D precise adjusting frame. The 3D displacement is calculated and compared with the definite displacement. The error is 4%-11% and the availability of this method was certified. Using this method, the compression deformation of a thin-wall cylinder with 140 mm in height, 64 mm in inner diameter and 64.6,mm in external diameter, was also measured. This method is proper to measure dynamic deformation.展开更多
This paper analyzes the potential color f ormats of ferrograph images, and presents the algorithms of converting the forma ts to RGB(Red, Green, Blue) color space. Through statistical analysis of wear pa rticles′ ge...This paper analyzes the potential color f ormats of ferrograph images, and presents the algorithms of converting the forma ts to RGB(Red, Green, Blue) color space. Through statistical analysis of wear pa rticles′ geometric features of color ferrograph images in the RGB color space, we give the differences of ferrograph wear particles′ geometric features among RGB color spaces and gray scale space, and calculate their respective distributi ons.展开更多
The computer image processing technology was used to accomplish the feature extraction of defect images on wood surface. By calculation of gray values of defects. three feature data which are useful to identify the de...The computer image processing technology was used to accomplish the feature extraction of defect images on wood surface. By calculation of gray values of defects. three feature data which are useful to identify the defects have been achieved. The experiment indicates that this way is effective to the automation recognition of the defects on wood surface.展开更多
The catechol-O-methyltransferase(COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene,Val158/158 Met,has been proposed to influence gray matter volume(GMV). However,the ...The catechol-O-methyltransferase(COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene,Val158/158 Met,has been proposed to influence gray matter volume(GMV). However,the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study,we explored the relationship between the Val158 Met polymorphism of the COMT gene and the GMV/ cortical thickness/cortical surface area in 150 firstepisode treatment-nave patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual,medial temporal,parietal,and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover,a diagnosis × genotype interaction was found for the GMV of the left precuneus,and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition,a pattern ofincreased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia,and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area.展开更多
The aim of the current study was to use whole brain voxel-based morphometry(VBM)to assess the gray matter(GM)changes in unmedicated patients with obsessive-compulsive disorder(OCD)compared with normal controls.W...The aim of the current study was to use whole brain voxel-based morphometry(VBM)to assess the gray matter(GM)changes in unmedicated patients with obsessive-compulsive disorder(OCD)compared with normal controls.We compared the GM volumes in28 patients with 22 matched healthy controls using a1.5T MRI.Three-dimensional T1-weighted magnetic resonance images were obtained from all participants.VBM was performed to detect GM volume differences between the two groups.We detected increased regional GM volumes in the bilateral middle temporal gyri,bilateral middle occipital gyri,bilateral globus pallidus,right inferior parietal gyrus,left superior parietal gyrus,right parahippocampus,right supramarginal gyrus,right medial superior frontal gyrus,and left inferior frontal opercular cortex in the OCD patients relative to controls(P〈0.001,uncorrected,cluster size〉100 voxels).No decreased GM volume was found in the OCD group compared with normal controls.Our findings suggest that structural changes in the GM are not limited to fronto-striato-thalamic circuits in the pathogenesis of OCD.Temporo-parietal cortex may also play an important role.展开更多
This paper introduces a Gray map from (Fp + vFp)n to F2pn, and describes the relationship between codes over Fp + vFp and their Gray images. The authors prove that every cyclic code of arbitrary length n over Fp ...This paper introduces a Gray map from (Fp + vFp)n to F2pn, and describes the relationship between codes over Fp + vFp and their Gray images. The authors prove that every cyclic code of arbitrary length n over Fp + vFp is principal, and determine its generator polynomial as well as the number of cyclic codes. Moreover, the authors obtain many best-known p-ary quasic-cyclic codes in terms of their parameters via the Gray map.展开更多
Background Preschooling is a critical time for intervention in children with autism spectrum disorder(ASD);thus,we analyzed brain tissue component volumes(BTCVs)and clinical indicators in preschool children with ASD t...Background Preschooling is a critical time for intervention in children with autism spectrum disorder(ASD);thus,we analyzed brain tissue component volumes(BTCVs)and clinical indicators in preschool children with ASD to identify new biomarkers for early screening.Methods Eighty preschool children(3–6 years)with ASD were retrospectively included.The whole-brain myelin content(MyC),white matter(WM),gray matter(GM),cerebrospinal fluid(CSF),and non-WM/GM/MyC/CSF brain component volumes were obtained using synthetic magnetic resonance imaging(SyMRI).Clinical data,such as intelligence scores,autism diagnostic observation schedule-calibrated severity scores,age at first production of single words(AFSW),age at first production of phrases(AFP),and age at walking onset(AWO),were also collected.The correlation between the BTCV and clinical data was evaluated,and the effect of BTCVs on clinical data was assessed by a regression model.Results WM and GM volumes were positively correlated with intelligence scores(both P<0.001),but WM and GM did not affect intelligence scores(P=0.116,P=0.290).AWO was positively correlated with AFSW and AFP(both P<0.001).The multivariate linear regression analysis revealed that MyC,AFSW,AFP,and AWO were significantly different(P=0.005,P<0.001,P<0.001).Conclusions This study revealed positive correlations between WM and GM volumes and intelligence scores.Whole-brain MyC affected AFSW,AFP,and AWO in preschool children with ASD.Noninvasive quantification of BTCVs via SyMRI revealed a new visualizable and quantifiable biomarker(abnormal MyC)for early ASD screening in preschool children.展开更多
文摘Computing moments on images is very important in the fields of image processing and pattern recognition. The non-symmetry and anti-packing model (NAM) is a general pattern representation model that has been developed to help design some efficient image representation methods. In this paper, inspired by the idea of computing moments based on the S-Tree coding (STC) representation and by using the NAM and extended shading (NAMES) approach, we propose a fast algorithm for computing lower order moments based on the NAMES representation, which takes O(N) time where N is the number of NAM blocks. By taking three idiomatic standard gray images 'Lena', 'F16', and 'Peppers' in tile field of image processing as typical test objects, and by comparing our proposed algorithm with the conventional algorithm and the popular STC representation algorithm for computing the lower order moments, the theoretical and experimental results presented in this paper show that the average execution time improvement ratios of the proposed NAMES approach over the STC approach, and also the conventional approach are 26.63%, and 82.57% respectively while maintaining the image quality.
基金supported by the National Natural Science Foundation of China(6110118561302145)
文摘Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.
文摘Steganography is the art of hiding a secret message in some kind of media. The main goal is not to hide only the secret message but also the existence of communication and secure data transferring. There are a lot of methods that were utilized for building the steganography;such as LSB (Least Significant Bits), Discrete Cosine Transform (DCT), Discrete Fourier Transform, Spread-Spectrum Encoding, and Perceptual Masking, but all of them are challenged by steganalysis. This paper proposes a new technique for Gray Scale Image Steganography that uses the idea of image segmentation and LSB to deal with such problem. The proposed method deals with different types of images by converting them to a virtual gray scale 24 bitmaps, finds out the possible segments inside image and then computes the possible areas for each segment with boundaries. Any intruder trying to find the transformed image will not be able to understand it without the correct knowledge about the transformation process. The knowledge is represented by the key of image segmentation, key of data distribution inside segment (area selection), key of mapping within each area segment, key agreement of cryptography method, key of secret message length and key of message extension. Our method is distinguishing oneself by one master key to generate the area selection key, pixels selection keys and cryptography key. Thus, the existence of secret message is hard to be detected by the steganalysis. Experiment results show that the proposed technique satisfied the main requirements of steganography;visual appearance, modification rate, capacity, undetectability, and robustness against extraction (security). Also it achieved the maximum capacity of cover image with a modification rate equals 0.04 and visual quality for stego-image comparable to cover image.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Special Scientific Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)
文摘A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. Then, the best-matched one for every range block is obtained by analysing the relation between their coefficients. Experimental results show that the proposed method can shorten encoding time markedly, while the retrieved image quality is still acceptable. In the decoding step, a kind of simple line fitting on block boundaries is used to reduce blocking effects. At the same time, the proposed method can also achieve a high compression ratio.
基金National Natural Science Foundation of China (No.10472080).
文摘In this paper, white light digital image analysis in frequency domination area for measuring 3D displacement is put forward. The measuring system has the characteristics of whole-field, non-contact and omni-bearing measurement. It is simple and the coherent light is not demanded. Gray images before and after deformation are recorded using two CCDs at two different shooting angles, then digitalized and analyzed by frequency domination correlation arithmetic. The 2D displacement obtained is used to formulate 3D displacement via mathematical transformation. The experimental plate is 40,mm in length, 30,mm in width and 10 mm in height. The definite displacement is given using a 3D precise adjusting frame. The 3D displacement is calculated and compared with the definite displacement. The error is 4%-11% and the availability of this method was certified. Using this method, the compression deformation of a thin-wall cylinder with 140 mm in height, 64 mm in inner diameter and 64.6,mm in external diameter, was also measured. This method is proper to measure dynamic deformation.
文摘This paper analyzes the potential color f ormats of ferrograph images, and presents the algorithms of converting the forma ts to RGB(Red, Green, Blue) color space. Through statistical analysis of wear pa rticles′ geometric features of color ferrograph images in the RGB color space, we give the differences of ferrograph wear particles′ geometric features among RGB color spaces and gray scale space, and calculate their respective distributi ons.
文摘The computer image processing technology was used to accomplish the feature extraction of defect images on wood surface. By calculation of gray values of defects. three feature data which are useful to identify the defects have been achieved. The experiment indicates that this way is effective to the automation recognition of the defects on wood surface.
基金supported by the National Nature Science Foundation of China (81130024,30530300,and 30125014)the National Key Technology R&D Program of the Ministry of Science and Technology of China during the 12th Five-Year Plan (2012BAI01B06)+1 种基金the Ph.D. Program Foundation of the Ministry of Education of China (20110181110014)the National Basic Research Development Program(973 Program) of China (2007CB512301)
文摘The catechol-O-methyltransferase(COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene,Val158/158 Met,has been proposed to influence gray matter volume(GMV). However,the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study,we explored the relationship between the Val158 Met polymorphism of the COMT gene and the GMV/ cortical thickness/cortical surface area in 150 firstepisode treatment-nave patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual,medial temporal,parietal,and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover,a diagnosis × genotype interaction was found for the GMV of the left precuneus,and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition,a pattern ofincreased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia,and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area.
基金supported by the National High Technology Research and Development Program (863 Program) of China (2007AA02Z420)a Key Project of the Science and Technology Commission of Shanghai Municipality (074119520)+4 种基金the Program for Shanghai Outstanding Academic Leader Plans (08XD14036)the National Key Clinical Disciplines at Shanghai Mental Health Center (Office of Medical Affairs, Ministry of Health, 2011873 OMA-MH, 2011-873)a Guidance Project of the Shanghai Science and Technology Commission, China (124119a8200)the Medical Engineering Crossover Research Fund Program of Shanghai Jiao Tong University (YG2012MS59)
文摘The aim of the current study was to use whole brain voxel-based morphometry(VBM)to assess the gray matter(GM)changes in unmedicated patients with obsessive-compulsive disorder(OCD)compared with normal controls.We compared the GM volumes in28 patients with 22 matched healthy controls using a1.5T MRI.Three-dimensional T1-weighted magnetic resonance images were obtained from all participants.VBM was performed to detect GM volume differences between the two groups.We detected increased regional GM volumes in the bilateral middle temporal gyri,bilateral middle occipital gyri,bilateral globus pallidus,right inferior parietal gyrus,left superior parietal gyrus,right parahippocampus,right supramarginal gyrus,right medial superior frontal gyrus,and left inferior frontal opercular cortex in the OCD patients relative to controls(P〈0.001,uncorrected,cluster size〉100 voxels).No decreased GM volume was found in the OCD group compared with normal controls.Our findings suggest that structural changes in the GM are not limited to fronto-striato-thalamic circuits in the pathogenesis of OCD.Temporo-parietal cortex may also play an important role.
基金supported by NNSF of China under Grant Nos.11126174,60973125,71071045 and 71001032Talents youth Fund of Anhui Province Universities under Grant No.2012SQRL020ZD+1 种基金Youth Science Research Fund of Anhui University under Grant No.2009QN026Bthe 211 Project of Anhui University Grant No. KJTD002B
文摘This paper introduces a Gray map from (Fp + vFp)n to F2pn, and describes the relationship between codes over Fp + vFp and their Gray images. The authors prove that every cyclic code of arbitrary length n over Fp + vFp is principal, and determine its generator polynomial as well as the number of cyclic codes. Moreover, the authors obtain many best-known p-ary quasic-cyclic codes in terms of their parameters via the Gray map.
基金supported by grants from the National Natural Science Foundation of China(No.81801757)Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515010369 and 2023A1515010256)Guangzhou Municipal Science and Technology Project(No.202201020421).
文摘Background Preschooling is a critical time for intervention in children with autism spectrum disorder(ASD);thus,we analyzed brain tissue component volumes(BTCVs)and clinical indicators in preschool children with ASD to identify new biomarkers for early screening.Methods Eighty preschool children(3–6 years)with ASD were retrospectively included.The whole-brain myelin content(MyC),white matter(WM),gray matter(GM),cerebrospinal fluid(CSF),and non-WM/GM/MyC/CSF brain component volumes were obtained using synthetic magnetic resonance imaging(SyMRI).Clinical data,such as intelligence scores,autism diagnostic observation schedule-calibrated severity scores,age at first production of single words(AFSW),age at first production of phrases(AFP),and age at walking onset(AWO),were also collected.The correlation between the BTCV and clinical data was evaluated,and the effect of BTCVs on clinical data was assessed by a regression model.Results WM and GM volumes were positively correlated with intelligence scores(both P<0.001),but WM and GM did not affect intelligence scores(P=0.116,P=0.290).AWO was positively correlated with AFSW and AFP(both P<0.001).The multivariate linear regression analysis revealed that MyC,AFSW,AFP,and AWO were significantly different(P=0.005,P<0.001,P<0.001).Conclusions This study revealed positive correlations between WM and GM volumes and intelligence scores.Whole-brain MyC affected AFSW,AFP,and AWO in preschool children with ASD.Noninvasive quantification of BTCVs via SyMRI revealed a new visualizable and quantifiable biomarker(abnormal MyC)for early ASD screening in preschool children.