[Objective] Taken the Linjiang tourism as an example, tourism forecast system was established, difficulties related to the work of tourist area were solved. [Method] Dynamic predicted response model of Lijiang tourism...[Objective] Taken the Linjiang tourism as an example, tourism forecast system was established, difficulties related to the work of tourist area were solved. [Method] Dynamic predicted response model of Lijiang tourism market was established, through the gray correlation model GM (1, 1) and time-series method, using a computer simulation program for the actual model of operation, Lijiang tourism prospects were predicted and predicting results were evaluated. [Result] Total revenue of model gray parameter of Lijiang tourism a= 0.572 3 from 2009 to 2011, internal control parameters u=0.393 7, x(t+1) =-0.563 3exp(-0.572 3t)+0.688 0; total reception numbers of model gray parameter of Lijiang tourism a = 0.125 6, internal control parameters u = 344. 326 0, x(t+1)=3 102.483 5 exp(0.125 6 t)-2 741.283 5. Test results of two models showed that fitting degrees were good, and at the same time predicted that total revenue of Lijiang tourism reached 13 000 000 000, and total reception numbers reached 8 800 000. [Conclusion] This predicted system can carry out precision forecast for other tourist areas when cannot get all the information.展开更多
基金Supported by National Social Science Foundation of China(08BMZ042)~~
文摘[Objective] Taken the Linjiang tourism as an example, tourism forecast system was established, difficulties related to the work of tourist area were solved. [Method] Dynamic predicted response model of Lijiang tourism market was established, through the gray correlation model GM (1, 1) and time-series method, using a computer simulation program for the actual model of operation, Lijiang tourism prospects were predicted and predicting results were evaluated. [Result] Total revenue of model gray parameter of Lijiang tourism a= 0.572 3 from 2009 to 2011, internal control parameters u=0.393 7, x(t+1) =-0.563 3exp(-0.572 3t)+0.688 0; total reception numbers of model gray parameter of Lijiang tourism a = 0.125 6, internal control parameters u = 344. 326 0, x(t+1)=3 102.483 5 exp(0.125 6 t)-2 741.283 5. Test results of two models showed that fitting degrees were good, and at the same time predicted that total revenue of Lijiang tourism reached 13 000 000 000, and total reception numbers reached 8 800 000. [Conclusion] This predicted system can carry out precision forecast for other tourist areas when cannot get all the information.