The gray renewal GM (1,1) landslide prediction model was established by improving the gray model. Based on the established model, the author has made prediction of landslide deformation to the Xiangjiapo landslide and...The gray renewal GM (1,1) landslide prediction model was established by improving the gray model. Based on the established model, the author has made prediction of landslide deformation to the Xiangjiapo landslide and the Lianziya dangerous rock body. The results show that the gray renewal GM (1,1) model can supplement the new information in time and remove the old information which reduces the meaning of the information because of time lapse. Therefore, the model is closer to reality.展开更多
To predict the annual total yields of Chinese aquatic products in future five years ( 2011-2015) ,based on the theory and method of gray system,this paper firstly establishes a conventional GM ( 1,1) model and a gray ...To predict the annual total yields of Chinese aquatic products in future five years ( 2011-2015) ,based on the theory and method of gray system,this paper firstly establishes a conventional GM ( 1,1) model and a gray metabolic GM ( 1,1) model respectively to predict the annual total yields of Chinese aquatic products in 2006-2009 and compare the prediction accuracy between these two models. Then,it selects the model with higher accuracy to predict the annual total yields of Chinese aquatic products in future five years. The comparison indicates that gray metabolic GM ( 1,1) model has higher prediction accuracy and smaller error,thus it is more suitable for prediction of annual total yields of aquatic products. Therefore,it adopts the gray metabolic GM ( 1,1) model to predict annual total yields of Chinese aquatic products in 2011-2015. The prediction results of annual total yields are 55. 32,57. 46,59. 72,62. 02 and 64. 43 million tons respectively in future five years with annual average increase rate of about 3. 7% ,much higher than the objective of 2. 2% specified in the Twelfth Five-Year Plan of the National Fishery Development ( 2011 to 2015) . The results of this research show that the gray metabolic GM ( 1,1) model is suitable for prediction of yields of aquatic products and the total yields of Chinese aquatic products in 2011-2015 will totally be able to realize the objective of the Twelfth Five-Year Plan.展开更多
The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption...The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.展开更多
文摘The gray renewal GM (1,1) landslide prediction model was established by improving the gray model. Based on the established model, the author has made prediction of landslide deformation to the Xiangjiapo landslide and the Lianziya dangerous rock body. The results show that the gray renewal GM (1,1) model can supplement the new information in time and remove the old information which reduces the meaning of the information because of time lapse. Therefore, the model is closer to reality.
基金Supported by Special Project for Construction of Modern Agricultural Industrial Technology System(Grant No.:CARS-46-05)Scientific and Technological Project of Huazhong Agricultural University(Grant No.:52902-0900206038)National Natural Science Foundation of China(Grant No:31201719)
文摘To predict the annual total yields of Chinese aquatic products in future five years ( 2011-2015) ,based on the theory and method of gray system,this paper firstly establishes a conventional GM ( 1,1) model and a gray metabolic GM ( 1,1) model respectively to predict the annual total yields of Chinese aquatic products in 2006-2009 and compare the prediction accuracy between these two models. Then,it selects the model with higher accuracy to predict the annual total yields of Chinese aquatic products in future five years. The comparison indicates that gray metabolic GM ( 1,1) model has higher prediction accuracy and smaller error,thus it is more suitable for prediction of annual total yields of aquatic products. Therefore,it adopts the gray metabolic GM ( 1,1) model to predict annual total yields of Chinese aquatic products in 2011-2015. The prediction results of annual total yields are 55. 32,57. 46,59. 72,62. 02 and 64. 43 million tons respectively in future five years with annual average increase rate of about 3. 7% ,much higher than the objective of 2. 2% specified in the Twelfth Five-Year Plan of the National Fishery Development ( 2011 to 2015) . The results of this research show that the gray metabolic GM ( 1,1) model is suitable for prediction of yields of aquatic products and the total yields of Chinese aquatic products in 2011-2015 will totally be able to realize the objective of the Twelfth Five-Year Plan.
基金Supported by project of National Natural Science Foundation of China(No.41272360)
文摘The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.