期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Hybrid Color Texture Features Classification Through ANN for Melanoma
1
作者 Saleem Mustafa Arfan Jaffar +3 位作者 Muhammad Waseem Iqbal Asma Abubakar Abdullah S.Alshahrani Ahmed Alghamdi 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2205-2218,共14页
Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians ar... Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders,pigment networks,and the color of melanoma.These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease.The trained clinicians can overcome the issues such as low contrast,lesions varying in size,color,and the existence of several objects like hair,reflections,air bubbles,and oils on almost all images.Active contour is one of the suitable methods with some drawbacks for the segmentation of irre-gular shapes.An entropy and morphology-based automated mask selection is pro-posed for the active contour method.The proposed method can improve the overall segmentation along with the boundary of melanoma images.In this study,features have been extracted to perform the classification on different texture scales like Gray level co-occurrence matrix(GLCM)and Local binary pattern(LBP).When four different moments pull out in six different color spaces like HSV,Lin RGB,YIQ,YCbCr,XYZ,and CIE L*a*b then global information from different colors channels have been combined.Therefore,hybrid fused texture features;such as local,color feature as global,shape features,and Artificial neural network(ANN)as classifiers have been proposed for the categorization of the malignant and non-malignant.Experimentations had been carried out on datasets Dermis,DermQuest,and PH2.The results of our advanced method showed super-iority and contrast with the existing state-of-the-art techniques. 展开更多
关键词 gray level co-occurrence matrix local binary pattern artificial neural networks support vector machines COLOR skin cancer dermoscopic
下载PDF
处理非平衡数据的粒度SVM学习算法 被引量:15
2
作者 郭虎升 亓慧 王文剑 《计算机工程》 CAS CSCD 北大核心 2010年第2期181-183,共3页
针对支持向量机对于非平衡数据不能进行有效分类的问题,提出一种粒度支持向量机学习算法。根据粒度计算思想对多数类样本进行粒划分并从中获取信息粒,以使数据趋于平衡。通过这些信息粒来寻找局部支持向量,并在这些局部支持向量和少数... 针对支持向量机对于非平衡数据不能进行有效分类的问题,提出一种粒度支持向量机学习算法。根据粒度计算思想对多数类样本进行粒划分并从中获取信息粒,以使数据趋于平衡。通过这些信息粒来寻找局部支持向量,并在这些局部支持向量和少数类样本上进行有效学习,使SVM在非平衡数据集上获得令人满意的泛化能力。 展开更多
关键词 粒度支持向量机 非平衡数据 信息粒 局部支持向量
下载PDF
一种新的基于混合粒子的粒化支持向量机算法 被引量:6
3
作者 汪济洲 鲁昌华 蒋薇薇 《电子测量与仪器学报》 CSCD 北大核心 2015年第4期591-597,共7页
粒计算是信息处理邻域中新的概念和计算方法,但是,传统粒子支持向量机算法存在着映射前后的数据分布不一致的问题,同时,由于使用粒子中心替代粒子从而导致精度下降。为此,提出基于映射后的混合粒子支持向量机算法,首先,利用mercer核函... 粒计算是信息处理邻域中新的概念和计算方法,但是,传统粒子支持向量机算法存在着映射前后的数据分布不一致的问题,同时,由于使用粒子中心替代粒子从而导致精度下降。为此,提出基于映射后的混合粒子支持向量机算法,首先,利用mercer核函数将数据映射到高维空间,粒化计算后,找出含有更多分类信息的混合粒子,提取后作为输入集合对超平面进行训练,利用几何分析调整最优超平面,并采用基于QPSO算法对关键参数进行最优求解,从而提高算法的精度。实验表明该算法比传统粒子支持向量机算法正确率高10%,说明改进的粒化支持向量机算法提升效果明显。 展开更多
关键词 粒子支持向量机 混合粒子 超平面
下载PDF
基于灰色支持向量机的湿天然气集输管道腐蚀研究 被引量:10
4
作者 骆正山 郜阳 《中国安全科学学报》 CAS CSCD 北大核心 2013年第5期62-67,共6页
湿天然气集输管道系统运行时间长,管道腐蚀严重,失效泄漏事故频发,其系统风险评价面临诸多问题,因而研究其腐蚀率预测有重要意义。基于灰色支持向量机(GSVM)方法,综合考虑管道材质及其各种影响因素,对其进行灰色相关分析,并根据结果选... 湿天然气集输管道系统运行时间长,管道腐蚀严重,失效泄漏事故频发,其系统风险评价面临诸多问题,因而研究其腐蚀率预测有重要意义。基于灰色支持向量机(GSVM)方法,综合考虑管道材质及其各种影响因素,对其进行灰色相关分析,并根据结果选取有较高相关度的影响因子作为输入变量,将腐蚀率作为目标输出函数,建立湿天然气集输管道腐蚀预测模型。并通过实证分析比较,发现用该模型计算出的管道腐蚀率平均相对误差较小,其预测结果与实际值吻合程度较高,使预测精度得到提高。 展开更多
关键词 湿天然气 集输管道 灰色支持向量机(gsvm) 腐蚀率 预测
下载PDF
改进的粒度支持向量机在甲醇合成中的应用 被引量:1
5
作者 王建国 范凯 张文兴 《自动化仪表》 CAS 北大核心 2014年第10期9-12,共4页
针对甲醇合成过程中的复杂性和非线性等问题,利用共享最近邻(SNN)相似度将训练样本划分成若干个信息粒,然后分别进行支持向量提取,最后将提取出的支持向量融合,建立最终粗甲醇转化率预测模型。试验结果表明,改进的粒度支持向量机(GSVM)... 针对甲醇合成过程中的复杂性和非线性等问题,利用共享最近邻(SNN)相似度将训练样本划分成若干个信息粒,然后分别进行支持向量提取,最后将提取出的支持向量融合,建立最终粗甲醇转化率预测模型。试验结果表明,改进的粒度支持向量机(GSVM)可以将"冗余数据"进行删减,获得更"稀疏"的回归模型,精度也高于传统支持向量机的粗甲醇转化率模型,从而能更好地指导甲醇生产。 展开更多
关键词 支持向量机 共享最近邻(SNN) 粒度支持向量机 粗甲醇转化率 粒度计算
下载PDF
采用划分融合双向控制的粒度支持向量机 被引量:2
6
作者 赵帅群 郭虎升 王文剑 《智能系统学报》 CSCD 北大核心 2019年第6期1243-1254,共12页
粒度支持向量机(granular support vector machine,GSVM)引入粒计算的方式对原始数据集进行粒度划分以提高支持向量机(support vector machine,SVM)的学习效率。传统GSVM采用静态粒划分机制,即通过提取划分后数据簇中的代表信息进行模... 粒度支持向量机(granular support vector machine,GSVM)引入粒计算的方式对原始数据集进行粒度划分以提高支持向量机(support vector machine,SVM)的学习效率。传统GSVM采用静态粒划分机制,即通过提取划分后数据簇中的代表信息进行模型训练,有效地提升了SVM的学习效率,但由于GSVM对信息无差别的粒度划分导致对距离超平面较近的强信息粒提取不足,距离超平面较远的弱信息粒被过多保留,影响了SVM的学习性能。针对这一问题,本文提出了采用划分融合双向控制的粒度支持向量机方法(division-fusion support vec-tor machine,DFSVM)。该方法通过动态数据划分融合的方式,选取超平面附近的强信息粒进行深层次的划分,同时将距离超平面较远的弱信息粒进行选择性融合,以动态地保持训练样本规模的稳定性。通过实验表明,采用划分融合的方法能够在保证模型训练精度的条件下显著提升SVM的学习效率。 展开更多
关键词 支持向量机 粒度支持向量机 划分 融合 强信息粒 弱信息粒 动态机制 双向控制
下载PDF
支持向量机理论研究 被引量:1
7
作者 宋倩 林和平 周琪栋 《信息技术》 2013年第9期152-154,159,共4页
支持向量机(support vector machines,SVM)是一种基于小样本统计理论的机器学习方法,在解决非线性及高维模式识别中表现出明显的优势,是近年来机器学习领域的研究热点。文中介绍了支持向量机的原理,对经典的训练算法和一些新型的学习模... 支持向量机(support vector machines,SVM)是一种基于小样本统计理论的机器学习方法,在解决非线性及高维模式识别中表现出明显的优势,是近年来机器学习领域的研究热点。文中介绍了支持向量机的原理,对经典的训练算法和一些新型的学习模型进行了阐述,最后指出所面临的问题和研究方向。 展开更多
关键词 统计学习理论 支持向量机 GA—SVM gsvm RS—SVM
下载PDF
Classification of schizophrenic patients and healthy controls using multiple spatially independent components of structural MRI data
8
作者 Lubin WANG Hui SHEN +1 位作者 Baojuan LI Dewen HU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期353-362,共10页
Several meta-analyses were recently conducted in attempts to identify the core brain regions exhibiting pathological changes in schizophrenia,which could potentially act as disease markers.Based on the findings of the... Several meta-analyses were recently conducted in attempts to identify the core brain regions exhibiting pathological changes in schizophrenia,which could potentially act as disease markers.Based on the findings of these meta-analyses,we developed a multivariate pattern analysis method to classify schizophrenic patients and healthy controls using structural magnetic resonance imaging(sMRI)data.Independent component analysis(ICA)was used to decompose gray matter density images into a set of spatially independent components.Spatial multiple regression of a region of interest(ROI)mask with each of the components was then performed to determine pathological patterns,in which the voxels were taken as features for classification.After dimensionality reduction using principal component analysis(PCA),a nonlinear support vector machine(SVM)classifier was trained to discriminate schizophrenic patients from healthy controls.The performance of the classifier was tested using a 10-fold cross-validation strategy.Experimental results showed that two distinct spatial patterns displayed discriminative power for schizophrenia,which mainly included the prefrontal cortex(PFC)and subcortical regions respectively.It was found that simultaneous usage of these two patterns improved the classification performance compared to using either of them alone.Moreover,the two pathological patterns constitute a prefronto-subcortical network,suggesting that schizophrenia involves abnormalities in networks of brain regions. 展开更多
关键词 SCHIZOPHRENIA discriminative analysis gray matter network independent component analysis(ICA) support vector machine(SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部