A new cellular neural network (CNN) with nonlinear templates is presented forextracting convex corners of objects in gray-scale images. Application examples showed that the newCNN can even detect convex corner charact...A new cellular neural network (CNN) with nonlinear templates is presented forextracting convex corners of objects in gray-scale images. Application examples showed that the newCNN can even detect convex corner characteristics of objects in images with Gaussian noise.展开更多
An adaptive digital image watermark algorithm with strong robustness based on gray-scale morphology is proposed in this paper.The embedded strategies include:The algorithm seeks and extracts adaptively the image stron...An adaptive digital image watermark algorithm with strong robustness based on gray-scale morphology is proposed in this paper.The embedded strategies include:The algorithm seeks and extracts adaptively the image strong texture regions.The algorithm maps the image strong texture region to the wavelet tree structures, and embeds adaptively watermark into the wavelet coefficients corresponding to the image's strong texture regions.According to the visual masking features, the algorithm adjusts adaptively the watermark-embedding intensity.Experimental results show the algorithm is robust to compression, filtering, noise as well as strong shear attacks.The algorithm is blind watermark scheme.The image strong texture region extraction method based on morphology in this algorithm is simple and effective and adaptive to various images.展开更多
Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that...Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.展开更多
Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity...Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity curves along with axial log-log coordinates.Such an effect,if not properly processed,can distort the resistivity of rock formation and the depth of interfaces,and even make the geological structures unrecognizable.In this paper,we discuss the reasons and characteristics of the static shift and summarize the previous studies regarding static shift correction.Then,we propose the Guided Image Filtering algorithm to suppress static shifts in CSAMT.In detail,we use the multi-window superposition method to superimpose 1D signals into a 2D matrix image,which is subsequently processed with Guided Image Filtering.In the synthetic model study and field examples,the Guided Image Filtering algorithm has effectively corrected and suppressed static shifts,and finally improved the precision of data interpretation.展开更多
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image...The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.展开更多
Camera calibration is the key technique in a C-arm based orthopaedic surgical navigation system. The extraction of marker location information is a necessary step in the calibration process. Ideal marker images should...Camera calibration is the key technique in a C-arm based orthopaedic surgical navigation system. The extraction of marker location information is a necessary step in the calibration process. Ideal marker images should possess uniform background and contain marker shadow only, but in fact marker images always possess nonuniform background and are contaminated by noise and unwanted anatomic information, making the extraction very difficult. A target-orientated marker shadow extraction method was proposed. With this method a proper threshold for marker image binarization can be determined.展开更多
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i...It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.展开更多
Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.unifo...Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.展开更多
An instrument is developed to measure the dynamic andstatic fabric drapability by the technology of image analy-sis. A set of stepper motor speed - regulation system,which is based on the control of single - chip micr...An instrument is developed to measure the dynamic andstatic fabric drapability by the technology of image analy-sis. A set of stepper motor speed - regulation system,which is based on the control of single - chip microproces-sor and microcomputer, is developed to form the dynamictest environment in order to implement the measurementof dynamic drapability. An algorithm is presented to con-vert the original draped images which are captured by adigital camera into binary images. The test results showthat the algorithm is adapted for all kinds of fabrics. Thewhole measurement process is controlled by a展开更多
This paper presents a new method of lossless image compression. An image is characterized by homogeneous parts. The bit planes, which are of high weight are characterized by sequences of 0 and 1 are successive encoded...This paper presents a new method of lossless image compression. An image is characterized by homogeneous parts. The bit planes, which are of high weight are characterized by sequences of 0 and 1 are successive encoded with RLE, whereas the other bit planes are encoded by the arithmetic coding (AC) (static or adaptive model). By combining an AC (adaptive or static) with the RLE, a high degree of adaptation and compression efficiency is achieved. The proposed method is compared to both static and adaptive model. Experimental results, based on a set of 12 gray-level images, demonstrate that the proposed scheme gives mean compression ratio that are higher those compared to the conventional arithmetic encoders.展开更多
Everyone knows that thousand of words are represented by a single image. As a result, image search has become a very popular mechanism for the Web-searchers. Image search means, the search results are produced by the ...Everyone knows that thousand of words are represented by a single image. As a result, image search has become a very popular mechanism for the Web-searchers. Image search means, the search results are produced by the search engine should be a set of images along with their Web-page Unified Resource Locator (URL). Now Web-searcher can perform two types of image search, they are “Text to Image” and “Image to Image” search. In “Text to Image” search, search query should be a text. Based on the input text data, system will generate a set of images along with their Web-page URL as an output. On the other hand, in “Image to Image” search, search query should be an image and based on this image, system will generate a set of images along with their Web-page URL as an output. According to the current scenarios, “Text to Image” search mechanism always not returns perfect result. It matches the text data and then displays the corresponding images as an output, which is not always perfect. To resolve this problem, Web researchers have introduced the “Image to Image” search mechanism. In this paper, we have also proposed an alternate approach of “Image to Image” search mechanism using Histogram.展开更多
Mobile applications(apps for short)often need to display images.However,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user experience.This paper first...Mobile applications(apps for short)often need to display images.However,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user experience.This paper first establishes a descriptive framework for the image displaying procedures of IID issues.Based on the descriptive framework,we conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate the presence and severity of IID issues,and then shed light on these issues’characteristics to support research on effective issue detection.With the findings of this study,we propose a static IID issue detection tool TAPIR and evaluate it with 243 real-world Android apps.Encouragingly,49 and 64 previously-unknown IID issues in two different versions of 16 apps reported by TAPIR are manually confirmed as true positives,respectively,and 16 previously-unknown IID issues reported by TAPIR have been confirmed by developers and 13 have been fixed.Then,we further evaluate the performance impact of these detected IID issues and the performance improvement if they are fixed.The results demonstrate that the IID issues detected by TAPIR indeed cause significant performance degradation,which further show the effectiveness and efficiency of TAPIR.展开更多
基金This project is jointly supported by the National Nature Science Foundation of China(Nos.60074034,70271068),the Research Fund for the Doctoral Program of Higher Education(No.20020008004)and the Foundation for University Key Teacher by the Ministry of Ed
文摘A new cellular neural network (CNN) with nonlinear templates is presented forextracting convex corners of objects in gray-scale images. Application examples showed that the newCNN can even detect convex corner characteristics of objects in images with Gaussian noise.
基金Supported by the Technology Key Project of Shanxi Province (2007K04-13)the Application Development and Research Project of Xi’an (YF07017)
文摘An adaptive digital image watermark algorithm with strong robustness based on gray-scale morphology is proposed in this paper.The embedded strategies include:The algorithm seeks and extracts adaptively the image strong texture regions.The algorithm maps the image strong texture region to the wavelet tree structures, and embeds adaptively watermark into the wavelet coefficients corresponding to the image's strong texture regions.According to the visual masking features, the algorithm adjusts adaptively the watermark-embedding intensity.Experimental results show the algorithm is robust to compression, filtering, noise as well as strong shear attacks.The algorithm is blind watermark scheme.The image strong texture region extraction method based on morphology in this algorithm is simple and effective and adaptive to various images.
基金supported by Korea Institute of Geoscience and Mineral Resources(Project No.GP2017-024)Ministry of Trade and Industry [Project No.NP2017-021(20172510102090)]funded by National Research Foundation of Korea(NRF)Grants(Nos.NRF-2017R1C1B5017767,NRF-2017K2A9A1A01092734)
文摘Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.
基金sponsored by the Basic Science Center Project of National Natural Science Foundation of China(72088101)。
文摘Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity curves along with axial log-log coordinates.Such an effect,if not properly processed,can distort the resistivity of rock formation and the depth of interfaces,and even make the geological structures unrecognizable.In this paper,we discuss the reasons and characteristics of the static shift and summarize the previous studies regarding static shift correction.Then,we propose the Guided Image Filtering algorithm to suppress static shifts in CSAMT.In detail,we use the multi-window superposition method to superimpose 1D signals into a 2D matrix image,which is subsequently processed with Guided Image Filtering.In the synthetic model study and field examples,the Guided Image Filtering algorithm has effectively corrected and suppressed static shifts,and finally improved the precision of data interpretation.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025/E091002the Open Research Foundation of SKLab AUV, HEU under Grant No.2008003
文摘The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.
基金Project of Science and Technology Committee of Shanghai Municipality (No.2528(3))
文摘Camera calibration is the key technique in a C-arm based orthopaedic surgical navigation system. The extraction of marker location information is a necessary step in the calibration process. Ideal marker images should possess uniform background and contain marker shadow only, but in fact marker images always possess nonuniform background and are contaminated by noise and unwanted anatomic information, making the extraction very difficult. A target-orientated marker shadow extraction method was proposed. With this method a proper threshold for marker image binarization can be determined.
基金National Natural Science Foundation of China(No.41271435)National Natural Science Foundation of China Youth Found(No.41301479)。
文摘It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.
基金supported by the National Natural Science Foundation of China (U21A20148, 31900506, 52007185)International Partnership Program of the Chinese Academy of Sciences(116134KYSB20210052)+2 种基金Heye Health Technology Chong Ming Project(HYCMP2021010)CAS President’s International Fellowship Initiative Grant(2022VMA0009)CASHIPS Director’s Fund (BJPY2021A06,2021YZGH04, YZJJ2020QN26, YZJJZX202014, YZJJ2021QN32,YZJJ2023QN43)。
文摘Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.
文摘An instrument is developed to measure the dynamic andstatic fabric drapability by the technology of image analy-sis. A set of stepper motor speed - regulation system,which is based on the control of single - chip microproces-sor and microcomputer, is developed to form the dynamictest environment in order to implement the measurementof dynamic drapability. An algorithm is presented to con-vert the original draped images which are captured by adigital camera into binary images. The test results showthat the algorithm is adapted for all kinds of fabrics. Thewhole measurement process is controlled by a
文摘This paper presents a new method of lossless image compression. An image is characterized by homogeneous parts. The bit planes, which are of high weight are characterized by sequences of 0 and 1 are successive encoded with RLE, whereas the other bit planes are encoded by the arithmetic coding (AC) (static or adaptive model). By combining an AC (adaptive or static) with the RLE, a high degree of adaptation and compression efficiency is achieved. The proposed method is compared to both static and adaptive model. Experimental results, based on a set of 12 gray-level images, demonstrate that the proposed scheme gives mean compression ratio that are higher those compared to the conventional arithmetic encoders.
文摘Everyone knows that thousand of words are represented by a single image. As a result, image search has become a very popular mechanism for the Web-searchers. Image search means, the search results are produced by the search engine should be a set of images along with their Web-page Unified Resource Locator (URL). Now Web-searcher can perform two types of image search, they are “Text to Image” and “Image to Image” search. In “Text to Image” search, search query should be a text. Based on the input text data, system will generate a set of images along with their Web-page URL as an output. On the other hand, in “Image to Image” search, search query should be an image and based on this image, system will generate a set of images along with their Web-page URL as an output. According to the current scenarios, “Text to Image” search mechanism always not returns perfect result. It matches the text data and then displays the corresponding images as an output, which is not always perfect. To resolve this problem, Web researchers have introduced the “Image to Image” search mechanism. In this paper, we have also proposed an alternate approach of “Image to Image” search mechanism using Histogram.
基金supported by the Leading-Edge Technology Program of Jiangsu Natural Science Foundation of China under Grant No.BK20202001the National Natural Science Foundation of China under Grant No.61932021.
文摘Mobile applications(apps for short)often need to display images.However,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user experience.This paper first establishes a descriptive framework for the image displaying procedures of IID issues.Based on the descriptive framework,we conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate the presence and severity of IID issues,and then shed light on these issues’characteristics to support research on effective issue detection.With the findings of this study,we propose a static IID issue detection tool TAPIR and evaluate it with 243 real-world Android apps.Encouragingly,49 and 64 previously-unknown IID issues in two different versions of 16 apps reported by TAPIR are manually confirmed as true positives,respectively,and 16 previously-unknown IID issues reported by TAPIR have been confirmed by developers and 13 have been fixed.Then,we further evaluate the performance impact of these detected IID issues and the performance improvement if they are fixed.The results demonstrate that the IID issues detected by TAPIR indeed cause significant performance degradation,which further show the effectiveness and efficiency of TAPIR.