Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in mo...Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in more attention to green manure.Human intervention and policy-oriented behaviors likely have large impacts on promoting green manure planting.However,little information is available regarding on where,at what rates,and in which ways(i.e.,intercropping green manure in orchards or rotating green manure in cropland) to develop green manure and what benefits could be gained by incorporating green manure in fields at the county scale.This paper presents the conversion of land use and its effects at small region extent(CLUE-S) model,which is specifically developed for the simulation of land use changes originally,to predict spatial distribution of green manure in cropland and orchards in 2020 in Pinggu District located in Beijing,China.Four types of land use for planting or not planting green manure were classified and the future land use dynamics(mainly croplands and orchards) were considered in the prediction.Two scenarios were used to predict the spatial distribution of green manure based on data from 2011:The promotion of green manure planting in orchards(scenario 1) and the promotion of simultaneous green manure planting in orchards and croplands(scenario 2).The predictions were generally accurate based on the receiver operating characteristic(ROC) and Kappa indices,which validated the effectiveness of the CLUE-S model in the prediction.In addition,the spatial distribution of the green manure was acquired,which indicated that green manure mainly located in the orchards of the middle and southern regions of Dahuashan,the western and southern regions of Wangxinzhuang,the middle region of Shandongzhuang,the eastern region of Pinggu and the middle region of Xiagezhuang under scenario 1.Green manure planting under scenario 2 occurred in orchards in the middle region of Wangxinzhuang,and croplands in most regions of Daxingzhuang,southern Pinggu,northern Xiagezhuang and most of Mafang.The spatially explicit results allowed for the assessment of the benefits of these changes based on different economic and ecological indicators.The economic and ecological gains of scenarios 1 and 2 were 175691 900 and143000 300 CNY,respectively,which indicated that the first scenario was more beneficial for promoting the same area of green manure.These results can facilitate policies of promoting green manure and guide the extensive use of green manure in local agricultural production in suitable ways.展开更多
The paper builds up a cost-benefit measuring model of green products in manufacturing industry throughout its full life cycle, which can quantify green products' cost and benefit completely and correctly under the ci...The paper builds up a cost-benefit measuring model of green products in manufacturing industry throughout its full life cycle, which can quantify green products' cost and benefit completely and correctly under the circumstance of satisfying enterprise, customer, environment and society. It also puts forth an operable method to estimate social benefit by opportunity cost and establishes a profit maximization-programming model. The model can be applied to justify whether some kinds of green products should be developed and produced.展开更多
CO2 concentrations in different plant communities (larch, birch, lilac, and grassland) were measured during the growing season in the Heilongjiang Forest Botanical Garden to study diurnal variation, seasonal and ann...CO2 concentrations in different plant communities (larch, birch, lilac, and grassland) were measured during the growing season in the Heilongjiang Forest Botanical Garden to study diurnal variation, seasonal and annual dynamics and factors that impact CO2 concentration in different spaces. CO2 concentration in different communities in green lands had an obvious diurnal variation, chronically decreasing, and temperature influenced the lilac area and the grassland. Seasonally, CO2 was lowest in the larch green land (344.03 ±23.03 μmol/mol) and highest in the grassland (360.13 ± 22.43 μmol/mol). The overall trend in CO2 concentration was autumn 〉 spring 〉 summer; temperature is the main factor controlling variation in CO2 concentrations during the growing season; the CO2 concentration at the larch, birch, lilac, and grassland types of sites was negatively correlated with land surface temperature and air temperature, and the CO2 concentration at the larch and birch sites was positively correlated with atmospheric pressure. Without any obvious annual change law, further study and observation are needed.展开更多
基金supported by the Special Fund for Agroscientific Research in the Public Interest,China(20110300501-01)the Special Fund for First-Class University (4572-18101510)
文摘Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in more attention to green manure.Human intervention and policy-oriented behaviors likely have large impacts on promoting green manure planting.However,little information is available regarding on where,at what rates,and in which ways(i.e.,intercropping green manure in orchards or rotating green manure in cropland) to develop green manure and what benefits could be gained by incorporating green manure in fields at the county scale.This paper presents the conversion of land use and its effects at small region extent(CLUE-S) model,which is specifically developed for the simulation of land use changes originally,to predict spatial distribution of green manure in cropland and orchards in 2020 in Pinggu District located in Beijing,China.Four types of land use for planting or not planting green manure were classified and the future land use dynamics(mainly croplands and orchards) were considered in the prediction.Two scenarios were used to predict the spatial distribution of green manure based on data from 2011:The promotion of green manure planting in orchards(scenario 1) and the promotion of simultaneous green manure planting in orchards and croplands(scenario 2).The predictions were generally accurate based on the receiver operating characteristic(ROC) and Kappa indices,which validated the effectiveness of the CLUE-S model in the prediction.In addition,the spatial distribution of the green manure was acquired,which indicated that green manure mainly located in the orchards of the middle and southern regions of Dahuashan,the western and southern regions of Wangxinzhuang,the middle region of Shandongzhuang,the eastern region of Pinggu and the middle region of Xiagezhuang under scenario 1.Green manure planting under scenario 2 occurred in orchards in the middle region of Wangxinzhuang,and croplands in most regions of Daxingzhuang,southern Pinggu,northern Xiagezhuang and most of Mafang.The spatially explicit results allowed for the assessment of the benefits of these changes based on different economic and ecological indicators.The economic and ecological gains of scenarios 1 and 2 were 175691 900 and143000 300 CNY,respectively,which indicated that the first scenario was more beneficial for promoting the same area of green manure.These results can facilitate policies of promoting green manure and guide the extensive use of green manure in local agricultural production in suitable ways.
基金This paper is supported by National Nature Science Foundation of China (No.70472034).
文摘The paper builds up a cost-benefit measuring model of green products in manufacturing industry throughout its full life cycle, which can quantify green products' cost and benefit completely and correctly under the circumstance of satisfying enterprise, customer, environment and society. It also puts forth an operable method to estimate social benefit by opportunity cost and establishes a profit maximization-programming model. The model can be applied to justify whether some kinds of green products should be developed and produced.
文摘CO2 concentrations in different plant communities (larch, birch, lilac, and grassland) were measured during the growing season in the Heilongjiang Forest Botanical Garden to study diurnal variation, seasonal and annual dynamics and factors that impact CO2 concentration in different spaces. CO2 concentration in different communities in green lands had an obvious diurnal variation, chronically decreasing, and temperature influenced the lilac area and the grassland. Seasonally, CO2 was lowest in the larch green land (344.03 ±23.03 μmol/mol) and highest in the grassland (360.13 ± 22.43 μmol/mol). The overall trend in CO2 concentration was autumn 〉 spring 〉 summer; temperature is the main factor controlling variation in CO2 concentrations during the growing season; the CO2 concentration at the larch, birch, lilac, and grassland types of sites was negatively correlated with land surface temperature and air temperature, and the CO2 concentration at the larch and birch sites was positively correlated with atmospheric pressure. Without any obvious annual change law, further study and observation are needed.