The extract of green peel of Juglans mandshurica Maxim was extracted by common method for studying its insecticidal activities and analyzing the active components. Results showed that the alcohol extract and the chlor...The extract of green peel of Juglans mandshurica Maxim was extracted by common method for studying its insecticidal activities and analyzing the active components. Results showed that the alcohol extract and the chloroform part of extract (separated with chloroform from alcohol extract) form green peel of J. mandshurica have insecticidal activities in contact toxicity and stomach toxicity against larvae of Lymantria dispar L.. After application of the extracts for five days, the corrected mortality of larvae of Lymantria dispar for both extracts was more than 50% in contact toxicity and stomach toxicity at the concentration of ≥ 5 g·L^-1. The insecticidal activity for both alcohol extract and chloroform part of extract is more effect in contact toxicity than in stomach toxicity, but no significant difference in the insecticidal activities was found between alcohol extract and chloroform part of extract. The active components in the chloroform part of extract from green peel of.J. mandshurica were analyzed by GC-MS. The analyzed results showed that the active components in the chloroform part of extract are: (1) joglone (5-hydroxy-1,4- naphthaoquinone), the relative content 27.11%, (2) 1,5-Naphthalenediol, the relative content 9.52%, (3) 7-Methoxy-1-tetralone, the relative content 6.81%, (4) Benzofuran, 2,3-dihydro-, the relative content 6.76%, (5) 4-Hydroxy-2-methoxycinnamaldehyde, the relative content 3.99%, (6) 2-Methoxy-4-vinylphenol, the relative content 3.05%.展开更多
Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the ve...Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.展开更多
[Objective] The paper was to explore the synergistic effect of a novel adjuvant green orange peel oil on different herbicides in direct sowing paddy field. [Method] The synergistic test of green orange peel oil on 10%...[Objective] The paper was to explore the synergistic effect of a novel adjuvant green orange peel oil on different herbicides in direct sowing paddy field. [Method] The synergistic test of green orange peel oil on 10% cyanoflurate SC and 10% metamifop EC was conducted in 2019.[Result] The control effect of green orange peel oil 150 mL/hm^(2)+ 10% cyanoflurate SC 1 275 mL/hm^(2) on Echinochloa crusgalli and Leptochloa chinensis were significantly superior to that of 10% cyanoflurate SC 1 500 mL/hm^(2). The control effects of green orange peel oil 150 m L/hm^(2)+10%cyanoflurate SC 1 200 m L/hm^(2) on E. crusgalli and L. chinensis was equivalent to that of 10% cyanoflurate SC 1 500 mL/hm^(2). The control effect of green orange peel oil 150 mL/hm^(2)+ 10% metamifop EC 1 275 mL/hm^(2) on E. crusgalli and L. chinensis was equivalent to that of 10% metamifop EC 1 500 m L/hm^(2). [Conclusion] The green orange peel oil had certain synergistic effect on cyanoflurate and metamifop.展开更多
In order to find an effective method of detecting thrips defect on green-peel citrus, a defect segmentation method was developed using a single threshold value based on combination of characteristic wavelengths princi...In order to find an effective method of detecting thrips defect on green-peel citrus, a defect segmentation method was developed using a single threshold value based on combination of characteristic wavelengths principal component analysis (PCA) and B-spline lighting correction method in this study. At first, four characteristic wavelengths (523, 587, 700 and 768 nm) were obtained using PCA of Vis-NIR (visible and near-infrared) bands and analysis of weighting coefficients; secondarily, PCA was performed using characteristic wavelengths and the second principal component (PC2) was selected to classify images; then, B-spline lighting correction method was proposed to overcome the influence of lighting non-uniform on citrus when thrips defect was segmented; finally, thrips defect on citrus was extracted by global threshold segmentation and morphological image processing. The experimental results show that thrips defect in citrus can be detected with an accuracy of 96.5% by characteristic wavelengths PCA and B-spline lighting correction method. This study shows that thrips defect on green-peel citrus can be effectively identified using hyperspectral imaging technology.展开更多
Green chemistry methods for production of nanoparticles have many advantages, such as ease of use, which makes the methods desirable and economically viable. The aim of the present work was to green synthesise silver ...Green chemistry methods for production of nanoparticles have many advantages, such as ease of use, which makes the methods desirable and economically viable. The aim of the present work was to green synthesise silver nanoparticles (SNPs) using aqueous tangerine peel extract in different ratios (2:1, 1:1, 1:2). The formed SNPs were characterised using ultraviolet-visible (UV-Vis) spectrophotometry, and transmission electron microscopy (TEM). The UV-Vis spectra showed that the highest absorbance was observed when the ratio of peel tangerine extract to silver nitrate solution was 1:2. The transmission electron micrographs showed the formation of poly dispersed nanoparticles. It was found that the average diameter of the nanoparticles was 30.29 ± 5.1 nm, 16.68 ± 5.7 nm, and 25.85 ± 8.4 nm, using a tangerine peel solution and silver nitrate solution ratio of 2:1, 1:1, and 1:2, respectively. The formed SNPs were evaluated as catalysts for methyl orange dye degradation, and the results confirmed that SNPs can speed up the degradation of the dye.展开更多
基金This study was supported by Heilongjiang Natural Science Foundation (C2004-28)
文摘The extract of green peel of Juglans mandshurica Maxim was extracted by common method for studying its insecticidal activities and analyzing the active components. Results showed that the alcohol extract and the chloroform part of extract (separated with chloroform from alcohol extract) form green peel of J. mandshurica have insecticidal activities in contact toxicity and stomach toxicity against larvae of Lymantria dispar L.. After application of the extracts for five days, the corrected mortality of larvae of Lymantria dispar for both extracts was more than 50% in contact toxicity and stomach toxicity at the concentration of ≥ 5 g·L^-1. The insecticidal activity for both alcohol extract and chloroform part of extract is more effect in contact toxicity than in stomach toxicity, but no significant difference in the insecticidal activities was found between alcohol extract and chloroform part of extract. The active components in the chloroform part of extract from green peel of.J. mandshurica were analyzed by GC-MS. The analyzed results showed that the active components in the chloroform part of extract are: (1) joglone (5-hydroxy-1,4- naphthaoquinone), the relative content 27.11%, (2) 1,5-Naphthalenediol, the relative content 9.52%, (3) 7-Methoxy-1-tetralone, the relative content 6.81%, (4) Benzofuran, 2,3-dihydro-, the relative content 6.76%, (5) 4-Hydroxy-2-methoxycinnamaldehyde, the relative content 3.99%, (6) 2-Methoxy-4-vinylphenol, the relative content 3.05%.
文摘Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.
基金Supported by Research Development Fund of Huai’an Academy of Agricultural Sciences (HNY201918)。
文摘[Objective] The paper was to explore the synergistic effect of a novel adjuvant green orange peel oil on different herbicides in direct sowing paddy field. [Method] The synergistic test of green orange peel oil on 10% cyanoflurate SC and 10% metamifop EC was conducted in 2019.[Result] The control effect of green orange peel oil 150 mL/hm^(2)+ 10% cyanoflurate SC 1 275 mL/hm^(2) on Echinochloa crusgalli and Leptochloa chinensis were significantly superior to that of 10% cyanoflurate SC 1 500 mL/hm^(2). The control effects of green orange peel oil 150 m L/hm^(2)+10%cyanoflurate SC 1 200 m L/hm^(2) on E. crusgalli and L. chinensis was equivalent to that of 10% cyanoflurate SC 1 500 mL/hm^(2). The control effect of green orange peel oil 150 mL/hm^(2)+ 10% metamifop EC 1 275 mL/hm^(2) on E. crusgalli and L. chinensis was equivalent to that of 10% metamifop EC 1 500 m L/hm^(2). [Conclusion] The green orange peel oil had certain synergistic effect on cyanoflurate and metamifop.
基金supproted by the National Key Technology R&D Program of China(2012BAF07B05)
文摘In order to find an effective method of detecting thrips defect on green-peel citrus, a defect segmentation method was developed using a single threshold value based on combination of characteristic wavelengths principal component analysis (PCA) and B-spline lighting correction method in this study. At first, four characteristic wavelengths (523, 587, 700 and 768 nm) were obtained using PCA of Vis-NIR (visible and near-infrared) bands and analysis of weighting coefficients; secondarily, PCA was performed using characteristic wavelengths and the second principal component (PC2) was selected to classify images; then, B-spline lighting correction method was proposed to overcome the influence of lighting non-uniform on citrus when thrips defect was segmented; finally, thrips defect on citrus was extracted by global threshold segmentation and morphological image processing. The experimental results show that thrips defect in citrus can be detected with an accuracy of 96.5% by characteristic wavelengths PCA and B-spline lighting correction method. This study shows that thrips defect on green-peel citrus can be effectively identified using hyperspectral imaging technology.
文摘Green chemistry methods for production of nanoparticles have many advantages, such as ease of use, which makes the methods desirable and economically viable. The aim of the present work was to green synthesise silver nanoparticles (SNPs) using aqueous tangerine peel extract in different ratios (2:1, 1:1, 1:2). The formed SNPs were characterised using ultraviolet-visible (UV-Vis) spectrophotometry, and transmission electron microscopy (TEM). The UV-Vis spectra showed that the highest absorbance was observed when the ratio of peel tangerine extract to silver nitrate solution was 1:2. The transmission electron micrographs showed the formation of poly dispersed nanoparticles. It was found that the average diameter of the nanoparticles was 30.29 ± 5.1 nm, 16.68 ± 5.7 nm, and 25.85 ± 8.4 nm, using a tangerine peel solution and silver nitrate solution ratio of 2:1, 1:1, and 1:2, respectively. The formed SNPs were evaluated as catalysts for methyl orange dye degradation, and the results confirmed that SNPs can speed up the degradation of the dye.