A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: elect...A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: electron- transporting material 1,3,&tris (N-phenylbenzimidazole-2yl) (TPBi)1-X) in the middle of the emitting layer, and the best performance appears when x is 2/3. The position of this interlayer can also affect the performanee of phosphorescent organic light-emitting diodes. When this interlayer is close to the side of the electron transporting layer, the maximum value of luminance, the current efficiency and the power efficiency are 34090cd/m2 at 12 V, 60. 6 cd/A and 56.6 lm/W, respectively.展开更多
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum...A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.展开更多
文摘A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: electron- transporting material 1,3,&tris (N-phenylbenzimidazole-2yl) (TPBi)1-X) in the middle of the emitting layer, and the best performance appears when x is 2/3. The position of this interlayer can also affect the performanee of phosphorescent organic light-emitting diodes. When this interlayer is close to the side of the electron transporting layer, the maximum value of luminance, the current efficiency and the power efficiency are 34090cd/m2 at 12 V, 60. 6 cd/A and 56.6 lm/W, respectively.
基金Supported by the Nanjing University of Telecommunication and Posts under Grant No NY212010the National Natural Science Foundation of China under Grant Nos 91233117,50973104 and 51333007+2 种基金the Natural Science Fund of Jiangsu Province under Grant No BK2012834the National Basic Research Program of China under Grant No 2015CB932200the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.