[Objectives] The research aimed to extract green pigment from leaves of Arctium lappa L. and inspect its stability. [Methods] Ultrasound assisted method was used. [Results] Water bath temperature had little impact on ...[Objectives] The research aimed to extract green pigment from leaves of Arctium lappa L. and inspect its stability. [Methods] Ultrasound assisted method was used. [Results] Water bath temperature had little impact on green pigment, and Al^(3+), Cu^(2+), Mg^(2+) and Zn^(2+) in metal ions greatly affected green pigment, while Fe^(3+) had very little impact on the stability of green pigment. pH did not basically affect green pigment of A. lappa L. [Conclusions] The extraction rate and stability of green pigment from leaves of A. lappa L. were higher, and it was one of materials suitable for extracting green pigment.展开更多
The anthocyanin pigment extracted from green-wheat-bran was studied to identify its antioxidant activity.The antioxidant activities of the pigment were evaluated by anti-lipid peroxidation,total antioxidant activity ...The anthocyanin pigment extracted from green-wheat-bran was studied to identify its antioxidant activity.The antioxidant activities of the pigment were evaluated by anti-lipid peroxidation,total antioxidant activity (TAA),superoxide anion radical scavenging activity (SARSA),active oxygen scavenging activity (AOSA),and DPPH (1,1-diphenyl-2 picrylhydrazyl free radical) radical scavenging activity.The results showed that the pigment had higher antioxidant activity and TAA,SARSA,AOSA and DPPH.scavenging activities at a certain concentration than Vc (antiscorbutic vitamin,vitamin C),and the capacity increased with the increase of pigment concentration.Its TAA was 51.06 U mL-1,1.73 times of Vc,and SARSA 18 025.21 U mL-1,2.26% higher than Vc,and AOSA 3 776.31 U mL-1,1.24 times of Vc.As to the DPPH.scavenging activity of the pigment,there was a trend that higher concentration performed higher activity significantly improved with the company of Vc.The pigment showed significant antioxidant activities evaluated by different assays.Results will provide a better understanding on antioxidant activity of green wheat and allow the screening or breeding of green wheat varieties with higher antioxidant activity for food processing.展开更多
To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a wh...To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a white near-isogenic line (NIL). One differential spot identified as phenylocumaran benzylic ether redutase-like protein (PCBER) was expressed only in GCF, but was not found in white colored fiber (WCF) at any time points. Since PCBER was a key enzyme in lignans biosynthesis, total lignans were extracted from GCF and WCF and their content was determined by using a chromotropic acid spectrophotometric method. The results showed that total lignans content in GCF was significantly higher than that in WCF. The qPCR analysis for two PLR genes associated with lignans biosynthesis showed that the expression level of two genes was much higher in GCF than that in WCF at 24 and 27 days post anthesis (DPA), which may be responsible for the higher lignans content in GCF. Our study suggested that PCBER and lignans may be responsible for the color difference between GCF and WCF. Additionally, p-dimethylaminocinnamaldehyde (DMACA) staining demonstrated that the pigment in GCF was not proanthocyanidins, and was different from that in brown colored fiber (BCF). This study provided new clues for uncovering the molecular mechanisms related to pigment biosynthesis in GCF.展开更多
Naturally colored cotton fiber is environment-friendly but has monotonous color and poor fiber quality.Identification of green fiber or fuzz genes would aid in investigating the biosynthesis of green pigments in cotto...Naturally colored cotton fiber is environment-friendly but has monotonous color and poor fiber quality.Identification of green fiber or fuzz genes would aid in investigating the biosynthesis of green pigments in cotton fibers. In this study, we established a mapping population and found that the Lg^(f) trait(white lint and green fuzz) from Gossypium hirsutum race latifolium is controlled by an incompletely dominant gene.The Lg^(f) locus was mapped to a 71-kb interval on chromosome 21 containing seven genes, including a transcription factor with similarity to Arabidopsis MYB9. Harboring 13 SNPs and a 4-bp insertion/deletion in its promoter, GhMYB9 was highly up-regulated in the critical period for green pigment development in fuzz. Virus-induced gene silencing of GhMYB9 in a green-fuzz accession of G. hirsutum race latifolium TX-41 conferred white or light green fuzz. These results suggest that GhMYB9 is an important contributor to green pigments in cotton fiber and shed light on the regulatory mechanism controlling green pigmentation.展开更多
Silver nanoparticles,endowed with powerful antimicrobial property,are the most widely used nanomaterial in consumer products,with associated risk of their easy access to environment and freshwater ecosystems by surfac...Silver nanoparticles,endowed with powerful antimicrobial property,are the most widely used nanomaterial in consumer products,with associated risk of their easy access to environment and freshwater ecosystems by surface runoff.Although toxic effects of nanosilver on bacterial,fungal and mammalian cells have been documented,its impact on algal growth remains unknown.Pithophora oedogonia and Chara vulgaris are predominant members of photosynthetic eukaryotic algae,which form major component of global aquatic ecosystem.Here we report for the first time that nanosilver has significant adverse effects on growth and morphology of these filamentous green algae in a dose-dependent manner.Exposure of algal thalli to increasing concentrations of silver nanoparticles resulted in progressive depletion in algal chlorophyll content,chromosome instability and mitotic disturbance,associated with morphological malformations in algal filaments.SEM micrographs revealed dramatic alterations in cell wall in nanoparticle-treated algae,characterized with cell wall rupture and degradation in Pithophora.Although these observations underscore severe deleterious effects of nanosilver on aquatic environment,the information can also be exploited as a bioengineering strategy to control unwanted and persistent growth of noxious algal weeds that clog the municipal water supply and water channels and produce fouling of water bodies.展开更多
Several studies have investigated the protective functions of brain-derived neurotrophic factor(BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop ...Several studies have investigated the protective functions of brain-derived neurotrophic factor(BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293 T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19(ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293 T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293 T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases.展开更多
基金Supported by the National Key Research and Development Program of China during the 13th Five-Year Plan Period(2018ZX09301060)Science and Technology Plan Project of Sichuan Province(2016NZYZF0007)the Fourth National Survey of Traditional Chinese Medicine Resources Program(2017)
文摘[Objectives] The research aimed to extract green pigment from leaves of Arctium lappa L. and inspect its stability. [Methods] Ultrasound assisted method was used. [Results] Water bath temperature had little impact on green pigment, and Al^(3+), Cu^(2+), Mg^(2+) and Zn^(2+) in metal ions greatly affected green pigment, while Fe^(3+) had very little impact on the stability of green pigment. pH did not basically affect green pigment of A. lappa L. [Conclusions] The extraction rate and stability of green pigment from leaves of A. lappa L. were higher, and it was one of materials suitable for extracting green pigment.
基金supported by the National Technologies R&D Program of China (2006BAD01A02)the Excellent Medium-Youth Scientist Scientific Research Reward Fundation of Shandong Province, China (BS2009NY036)the Youth Science and Technology Creative Fundation Item of Shandong Agricultural University, China
文摘The anthocyanin pigment extracted from green-wheat-bran was studied to identify its antioxidant activity.The antioxidant activities of the pigment were evaluated by anti-lipid peroxidation,total antioxidant activity (TAA),superoxide anion radical scavenging activity (SARSA),active oxygen scavenging activity (AOSA),and DPPH (1,1-diphenyl-2 picrylhydrazyl free radical) radical scavenging activity.The results showed that the pigment had higher antioxidant activity and TAA,SARSA,AOSA and DPPH.scavenging activities at a certain concentration than Vc (antiscorbutic vitamin,vitamin C),and the capacity increased with the increase of pigment concentration.Its TAA was 51.06 U mL-1,1.73 times of Vc,and SARSA 18 025.21 U mL-1,2.26% higher than Vc,and AOSA 3 776.31 U mL-1,1.24 times of Vc.As to the DPPH.scavenging activity of the pigment,there was a trend that higher concentration performed higher activity significantly improved with the company of Vc.The pigment showed significant antioxidant activities evaluated by different assays.Results will provide a better understanding on antioxidant activity of green wheat and allow the screening or breeding of green wheat varieties with higher antioxidant activity for food processing.
基金supported by the National Natural Science Foundation of China (31460360)the National Key Research and Development Program,China (2016YFD0101900)the Foundation Research Funds for Advanced Talents of Shihezi University,China (RCZX201316)
文摘To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a white near-isogenic line (NIL). One differential spot identified as phenylocumaran benzylic ether redutase-like protein (PCBER) was expressed only in GCF, but was not found in white colored fiber (WCF) at any time points. Since PCBER was a key enzyme in lignans biosynthesis, total lignans were extracted from GCF and WCF and their content was determined by using a chromotropic acid spectrophotometric method. The results showed that total lignans content in GCF was significantly higher than that in WCF. The qPCR analysis for two PLR genes associated with lignans biosynthesis showed that the expression level of two genes was much higher in GCF than that in WCF at 24 and 27 days post anthesis (DPA), which may be responsible for the higher lignans content in GCF. Our study suggested that PCBER and lignans may be responsible for the color difference between GCF and WCF. Additionally, p-dimethylaminocinnamaldehyde (DMACA) staining demonstrated that the pigment in GCF was not proanthocyanidins, and was different from that in brown colored fiber (BCF). This study provided new clues for uncovering the molecular mechanisms related to pigment biosynthesis in GCF.
基金supported by the Genetically Modified Organisms Breeding Major Project of China(2016ZX08005005-001)the National Natural Science Foundation of China(31701471)the Fundamental Research Funds for the Central Universities(SWU118093)。
文摘Naturally colored cotton fiber is environment-friendly but has monotonous color and poor fiber quality.Identification of green fiber or fuzz genes would aid in investigating the biosynthesis of green pigments in cotton fibers. In this study, we established a mapping population and found that the Lg^(f) trait(white lint and green fuzz) from Gossypium hirsutum race latifolium is controlled by an incompletely dominant gene.The Lg^(f) locus was mapped to a 71-kb interval on chromosome 21 containing seven genes, including a transcription factor with similarity to Arabidopsis MYB9. Harboring 13 SNPs and a 4-bp insertion/deletion in its promoter, GhMYB9 was highly up-regulated in the critical period for green pigment development in fuzz. Virus-induced gene silencing of GhMYB9 in a green-fuzz accession of G. hirsutum race latifolium TX-41 conferred white or light green fuzz. These results suggest that GhMYB9 is an important contributor to green pigments in cotton fiber and shed light on the regulatory mechanism controlling green pigmentation.
基金supported by grants received by Anjali Dash from DST Women Scientist Scheme (DST WOSA)by D.Dash from the Department of Biotechnology (DBT),Govt.of Indiathe Indian Council of Medical Research (ICMR)
文摘Silver nanoparticles,endowed with powerful antimicrobial property,are the most widely used nanomaterial in consumer products,with associated risk of their easy access to environment and freshwater ecosystems by surface runoff.Although toxic effects of nanosilver on bacterial,fungal and mammalian cells have been documented,its impact on algal growth remains unknown.Pithophora oedogonia and Chara vulgaris are predominant members of photosynthetic eukaryotic algae,which form major component of global aquatic ecosystem.Here we report for the first time that nanosilver has significant adverse effects on growth and morphology of these filamentous green algae in a dose-dependent manner.Exposure of algal thalli to increasing concentrations of silver nanoparticles resulted in progressive depletion in algal chlorophyll content,chromosome instability and mitotic disturbance,associated with morphological malformations in algal filaments.SEM micrographs revealed dramatic alterations in cell wall in nanoparticle-treated algae,characterized with cell wall rupture and degradation in Pithophora.Although these observations underscore severe deleterious effects of nanosilver on aquatic environment,the information can also be exploited as a bioengineering strategy to control unwanted and persistent growth of noxious algal weeds that clog the municipal water supply and water channels and produce fouling of water bodies.
基金supported by the National Natural Science Foundation of China,No.81271046the Joint Program of Beijing Municipal Natural Science Foundation(category B)Beijing Educational Committee(key project),No.KZ201510025025
文摘Several studies have investigated the protective functions of brain-derived neurotrophic factor(BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293 T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19(ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293 T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293 T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases.