Objective:To investigate the antibacterial activity and photochemicals of five green leafy vegetables against a panel of five bacteria strains.Methods:Disc diffusion method was used to determine the antibacterial acti...Objective:To investigate the antibacterial activity and photochemicals of five green leafy vegetables against a panel of five bacteria strains.Methods:Disc diffusion method was used to determine the antibacterial activity,while kanamycin was used as a reference antibiotic.The phytochemical screening of the extracts was performed using standard methods.Results:All methanol extracts were found active against all the test bacterial strains.Overall maximum extracts shows antibacterial activity which range from 6 to 15 mm.Proteins and carbohydrates was found in all the green leaves,whereas alkaloid.steroids.saponins,flavonoids.tannins were found in most of the test samples.Conclusions:The obtain result suggests that green leafy vegetables have moderate antibacterial activity and contain various pharmacologically active compounds and thus provide the scientific basis for the traditional uses of the studied vegetables in the treatment of bacterial infections.展开更多
Recently, a novel green fluorescent protein eYGFPuv has been identified in the marine organism Chiridius poppei which displays high fluorescence intensity and can be visible by eyes in dark. Although strong green fluo...Recently, a novel green fluorescent protein eYGFPuv has been identified in the marine organism Chiridius poppei which displays high fluorescence intensity and can be visible by eyes in dark. Although strong green fluorescence was achieved in transgenic petunia, 3 expression cassettes (about 8 kb) complicate its application. In this study, to confirm whether 1 expression cassette could be used as a transgenic marker in prokaryotes and eukaryotes, eYGFPuv was cloned into prokaryotic expression vector pET28α-eYGFPuv- His and plant binary expression vector 35S::eYGFPuv. Compared to EGFP, eYGFPuv protein exhibited stronger dazzling green fluorescence in E. coli under excited light at 365 nm and maintains steadily over a long period of time without degradation. When transiently expressed in tobacco leaves, eYGFPuv protein displayed strong green fluorescence. Moreover, the fluorescence of eYGFPuv protein also could be directly observed in living plant, and thus can be used easily as a marker to screen transformed lines in transgenic research. Overall, compared to previous studies on eYGFPuv tandem repeats, our data confirmed that single eYGFPuv sequence still possesses high fluorescence intensity and quenching resistance. Furthermore, because of small size of expression cassette,it is suitable for efficient transformation in both prokaryotic and eukaryotic organisms.展开更多
甘蓝型油菜(以下简称:油菜)是我国主要食用油料作物,也是一种用地养地、轮作休耕作物。在农业绿色发展理念的推动下,油菜由于具有生物量大、适应性广等特点,其绿肥应用价值突显。由于油菜栽培产业目标的不同,现有主栽油菜品种营养需求...甘蓝型油菜(以下简称:油菜)是我国主要食用油料作物,也是一种用地养地、轮作休耕作物。在农业绿色发展理念的推动下,油菜由于具有生物量大、适应性广等特点,其绿肥应用价值突显。由于油菜栽培产业目标的不同,现有主栽油菜品种营养需求特征决定其需要较高的推荐施肥水平,不能更好实现油菜绿肥应用“小肥换大肥”的产业目标。因此,评价油菜耐低氮胁迫能力、筛选低氮高效油菜种质,可为绿肥应用专用型油菜品种的选育提供材料支撑。本研究以73份油菜种质资源作为供试材料,通过田间试验设置低氮和正常施氮2个处理,以盛花期生物量、植株氮累积量、耐性指数等为指标对供试材料绿肥应用潜力进行综合评价。结果显示,盛花期低氮处理下73份油菜种质单株鲜重变化幅度为29.33~199.33g,变异系数30.0%;油菜单株地上部和根部氮累积量变化幅度分别为48.67~360.43mg和4.21~67.46mg,变异系数分别为31.0%和53.0%。由此可见,盛花期单株鲜重和养分吸收累积能力在供试油菜种质间存在着一定的遗传变异,优选绿肥性状优异的油菜种质资源具有可行性。通过分析不同油菜种质盛花期氮效率综合值和耐性指数可知,73份油菜种质中有25份属于耐低氮型的种质低氮胁迫耐受能力相对较强,17份属于低氮敏感型的种质低氮胁迫耐受能力相对较差。进一步分析发现,耐低氮种质在不同氮处理下单株鲜重、氮累积量及氮吸收效率均显著高于低氮敏感型种质,适宜作为潜在绿肥资源应用,耐低氮油菜种质氮还田量最高可达80.2 kg hm^(-2)。综上,本研究优选的耐低氮种质可作为潜在绿肥专用型油菜资源进行储备和应用,在实际生产中耐低氮油菜作为绿肥应用可适当减少化肥投入,以更好实现绿肥“小肥换大肥”的产业应用目标。展开更多
基金Supported by a grant from the Research Center of the Center for Female Scientific and Medical Colleges,Deanship of Scientific Research,King Saud University
文摘Objective:To investigate the antibacterial activity and photochemicals of five green leafy vegetables against a panel of five bacteria strains.Methods:Disc diffusion method was used to determine the antibacterial activity,while kanamycin was used as a reference antibiotic.The phytochemical screening of the extracts was performed using standard methods.Results:All methanol extracts were found active against all the test bacterial strains.Overall maximum extracts shows antibacterial activity which range from 6 to 15 mm.Proteins and carbohydrates was found in all the green leaves,whereas alkaloid.steroids.saponins,flavonoids.tannins were found in most of the test samples.Conclusions:The obtain result suggests that green leafy vegetables have moderate antibacterial activity and contain various pharmacologically active compounds and thus provide the scientific basis for the traditional uses of the studied vegetables in the treatment of bacterial infections.
基金supported by the National Natural Science Foundation of China (31500237)
文摘Recently, a novel green fluorescent protein eYGFPuv has been identified in the marine organism Chiridius poppei which displays high fluorescence intensity and can be visible by eyes in dark. Although strong green fluorescence was achieved in transgenic petunia, 3 expression cassettes (about 8 kb) complicate its application. In this study, to confirm whether 1 expression cassette could be used as a transgenic marker in prokaryotes and eukaryotes, eYGFPuv was cloned into prokaryotic expression vector pET28α-eYGFPuv- His and plant binary expression vector 35S::eYGFPuv. Compared to EGFP, eYGFPuv protein exhibited stronger dazzling green fluorescence in E. coli under excited light at 365 nm and maintains steadily over a long period of time without degradation. When transiently expressed in tobacco leaves, eYGFPuv protein displayed strong green fluorescence. Moreover, the fluorescence of eYGFPuv protein also could be directly observed in living plant, and thus can be used easily as a marker to screen transformed lines in transgenic research. Overall, compared to previous studies on eYGFPuv tandem repeats, our data confirmed that single eYGFPuv sequence still possesses high fluorescence intensity and quenching resistance. Furthermore, because of small size of expression cassette,it is suitable for efficient transformation in both prokaryotic and eukaryotic organisms.
文摘甘蓝型油菜(以下简称:油菜)是我国主要食用油料作物,也是一种用地养地、轮作休耕作物。在农业绿色发展理念的推动下,油菜由于具有生物量大、适应性广等特点,其绿肥应用价值突显。由于油菜栽培产业目标的不同,现有主栽油菜品种营养需求特征决定其需要较高的推荐施肥水平,不能更好实现油菜绿肥应用“小肥换大肥”的产业目标。因此,评价油菜耐低氮胁迫能力、筛选低氮高效油菜种质,可为绿肥应用专用型油菜品种的选育提供材料支撑。本研究以73份油菜种质资源作为供试材料,通过田间试验设置低氮和正常施氮2个处理,以盛花期生物量、植株氮累积量、耐性指数等为指标对供试材料绿肥应用潜力进行综合评价。结果显示,盛花期低氮处理下73份油菜种质单株鲜重变化幅度为29.33~199.33g,变异系数30.0%;油菜单株地上部和根部氮累积量变化幅度分别为48.67~360.43mg和4.21~67.46mg,变异系数分别为31.0%和53.0%。由此可见,盛花期单株鲜重和养分吸收累积能力在供试油菜种质间存在着一定的遗传变异,优选绿肥性状优异的油菜种质资源具有可行性。通过分析不同油菜种质盛花期氮效率综合值和耐性指数可知,73份油菜种质中有25份属于耐低氮型的种质低氮胁迫耐受能力相对较强,17份属于低氮敏感型的种质低氮胁迫耐受能力相对较差。进一步分析发现,耐低氮种质在不同氮处理下单株鲜重、氮累积量及氮吸收效率均显著高于低氮敏感型种质,适宜作为潜在绿肥资源应用,耐低氮油菜种质氮还田量最高可达80.2 kg hm^(-2)。综上,本研究优选的耐低氮种质可作为潜在绿肥专用型油菜资源进行储备和应用,在实际生产中耐低氮油菜作为绿肥应用可适当减少化肥投入,以更好实现绿肥“小肥换大肥”的产业应用目标。