期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Predicting the Number of Beijing Science and Technology Personnel Based on GM(1,N) Model
1
作者 Xiaocun Mao Zhenping Li 《Open Journal of Applied Sciences》 2016年第5期299-309,共11页
In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (resear... In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (research and development) personnel FTE (Full Time Equivalent), intramural expenditure for R&D and Patent Application Amount. According to the grey correlation coefficient, screening of grey GM(1,N) prediction variables, the grey prediction model is established. Meanwhile, time series model and GM(1,1) model are established for patent applications and R&D personnel equivalent FTE. By comparing the simulating results with the real data, the absolute relative error of prediction models is less than 10%. The results of the prediction model are tested. In order to improve the prediction accuracy, the mean values of the predicted values of the two models are brought into the GM(1,N) model to predict the number of scientific and technical personnel in Beijing during 2015-2025. Forecast results show that the number of science and technology personnel in Beijing will grow with exponential growth trend in the next ten years, which has a certain reference value for predicting the science and technology activities and formulating the policy in Beijing. 展开更多
关键词 grey Relational Analysis GM(1 n) model Time Series Science and Technology
下载PDF
基于新型核与灰度序列的时滞GM(1,N)模型及其应用 被引量:1
2
作者 熊萍萍 石佳 +1 位作者 姚天祥 闫书丽 《运筹与管理》 CSSCI CSCD 北大核心 2022年第12期93-98,共6页
为了解决GM(1,N)模型在新型核与灰度的基础上,对驱动项的延迟作用机理不明确的问题,将时滞参数引入到GM(1,N)模型的驱动项中,构建了基于新型核与灰度的时滞GM(1,N)模型,分析了时滞参数的辨识方法,讨论了新模型的建模机理。为了更好地对... 为了解决GM(1,N)模型在新型核与灰度的基础上,对驱动项的延迟作用机理不明确的问题,将时滞参数引入到GM(1,N)模型的驱动项中,构建了基于新型核与灰度的时滞GM(1,N)模型,分析了时滞参数的辨识方法,讨论了新模型的建模机理。为了更好地对该模型的有效性进行验证,将优化的时滞GM(1,N)模型对南京市的雾霾进行预测分析,选择GM(1,N)模型、一元回归模型与文中的优化模型进行对比。结果显示,优化模型对PM10浓度的拟合精度更高,且误差均控制在5%之内,从而验证了提出的优化模型适用于具有时滞特征数据的模拟和预测。 展开更多
关键词 灰色系统理论 GM(1 n)模型 时滞效应 新型核与灰度 雾霾预测
下载PDF
灰色离散序列增量动态GML(n,1)模型的参数辩识方法及应用
3
作者 卢恩双 孙全敏 《数学的实践与认识》 CSCD 北大核心 2003年第5期39-42,共4页
基于灰色 GM( n,1 )微分动态建模原理 ,按离散数据序列特点 ,提出灰色离散时间序列增量动态GML( n,1 )模型及初次、二次参数辩识方法 .GML( n,1 )模型的信息包容量丰富 ,适用范围广泛 .
关键词 线性叠加模型 参数辩识方法 离散时间序列 时间函数 扩展变量 灰色高阶增量动态gml(n 1)模型
原文传递
The Novel Triangle MGM(1,m,N)Model and Its Applications 被引量:3
4
作者 Pingping XIONG Yurui WU +1 位作者 Hui SHU Junjie WANG 《Journal of Systems Science and Information》 CSCD 2022年第3期257-279,共23页
The MGM(1,m,N)model is an effective grey multi-variate forecasting model that considers multiple system characteristic sequences affected by multiplefactors.Nevertheless,it isregularly inaccurate in the application Th... The MGM(1,m,N)model is an effective grey multi-variate forecasting model that considers multiple system characteristic sequences affected by multiplefactors.Nevertheless,it isregularly inaccurate in the application This is because the model requires a strong correlation between the system characteristic sequences That reduces the applicability of the model.To solve this problem,this paper proposes a novel multi-variate grey model.This model does not require a certain correlation between system characteristic sequences and has higher applicability Through numerical integration,a two-point trapezoidal formula,and a recursive method,thetime-response expressions ofthetwo model forms are obtained Some properties of the proposed model are further discussed Finally,the validity of the proposed model is evaluated by using two real cases related to China's invention patent development.Theresultsshow that the novel models outperformother models inbothsimulation and prediction applications. 展开更多
关键词 grey prediction multi-variate model MGM(1 m n)model invention patent
原文传递
基于新型核与灰度序列的MGM(1,m,N)模型及其应用 被引量:2
5
作者 熊萍萍 陈诗婷 +2 位作者 周依凡 刘煜淳 丁松 《中国管理科学》 CSSCI CSCD 北大核心 2022年第7期130-139,共10页
雾霾是空气质量重要评判标准之一,对其进行准确预测能为相关政府部门及时做出正确决策提供理论支持,因此预测雾霾具有实际意义。本文针对区间灰数分布信息已知的序列,构建多个影响因素作用于多个系统行为变量的灰色MGM(1,m,N)模型。首... 雾霾是空气质量重要评判标准之一,对其进行准确预测能为相关政府部门及时做出正确决策提供理论支持,因此预测雾霾具有实际意义。本文针对区间灰数分布信息已知的序列,构建多个影响因素作用于多个系统行为变量的灰色MGM(1,m,N)模型。首先根据可能度函数计算得到区间灰数的新型核与灰度序列,然后对新型核与灰度序列分别建立MGM(1,m,N)模型以求得模拟值和预测值,最后通过还原得到区间灰数序列的上、下界。为进一步验证该模型的可行性,本文将该模型应用于雾霾相关数据并与基于传统核与灰度序列的MGM(1,m,N)模型进行比较,结果表明本文构建的新模型的模拟预测精度都较传统模型更好。 展开更多
关键词 灰色系统 区间灰数 核与灰度 MGM(1 M n)模型 雾霾
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部