Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and w...Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and water resource management.Artificial forests are an important means of vegetation restoration in the western Loess Plateau,and accurate estimates of their evapotranspiration are essential to the management and development of water use strategies for artificial forests.This study estimated the soil moisture and evapotranspiration based on the HYDRUS-1D model for the artificial Platycladus orientalis(L.)Franco forest in western mountains of Loess Plateau,China from 20 April to 31 October,2023.Moreover,the influence factors were identified by combining the correlation coefficient method and the principal component analysis(PCA)method.The results showed that HYDRUS-1D model had strong applicability in portraying hydrological processes in this area and revealed soil water surplus from 20 April to 31 October,2023.The soil water accumulation was 49.64 mm;the potential evapotranspiration(ET_(p))was 809.67 mm,which was divided into potential evaporation(E_(p);95.07 mm)and potential transpiration(T_(p);714.60 mm);and the actual evapotranspiration(ET_(a))was 580.27 mm,which was divided into actual evaporation(E_(a);68.27 mm)and actual transpiration(T_(a);512.00 mm).From April to October 2023,the ET_(p),E_(p),T_(p),ET_(a),E_(a),and T_(a) first increased and then decreased on both monthly and daily scales,exhibiting a single-peak type trend.The average ratio of T_(a)/ET_(a) was 0.88,signifying that evapotranspiration mainly stemmed from transpiration in this area.The ratio of ET_(a)/ET_(p) was 0.72,indicating that this artificial forest suffered from obvious drought stress.The ET_(p) was significantly positively correlated with ET_(a),and the R^(2) values on the monthly and daily scales were 0.9696 and 0.9635(P<0.05),respectively.Furthermore,ET_(a) was significantly positively correlated with temperature,solar radiation,and wind speed,and negatively correlated with relative humidity and precipitation(P<0.05);and temperature exhibited the highest correlation with ET_(a).Thus,ET_(p) and temperature were the decisive contributors to ET_(a) in this area.The findings provide an effective method for simulating regional evapotranspiration and theoretical reference for water management of artificial forests,and deepen understanding of effects of each influence factors on ET_(a) in arid areas.展开更多
Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encodi...Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.展开更多
This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations a...This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications.展开更多
We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Se...We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.展开更多
In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.B...In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.展开更多
To create a new prediction model, the unbiased GM (1,1) model is optimized by the five-point slide method in this paper. Then, based on the occurrence areas of dce blast in Enshi District during 1995 -2004, the new ...To create a new prediction model, the unbiased GM (1,1) model is optimized by the five-point slide method in this paper. Then, based on the occurrence areas of dce blast in Enshi District during 1995 -2004, the new model and unbiased GM (1, 1 ) model are applied to predict the occurrence areas of rice blast during 2005 -2010. Predicting outcomes show that the prediction accuracy of five-point unbiased sliding optimized GM (1, 1 ) model is higher than the unbiased GM (1,1) model. Finally, combined with the prediction results, the author provides some suggestion for Enshi District in the prevention and control of rice blast in 2010.展开更多
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o...Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .展开更多
In the R&D phase of Gravity-1(YL-1), a multi-domain modeling and simulation technology based on Modelica language was introduced, which was a recent attempt in the practice of modeling and simulation method for la...In the R&D phase of Gravity-1(YL-1), a multi-domain modeling and simulation technology based on Modelica language was introduced, which was a recent attempt in the practice of modeling and simulation method for launch vehicles in China. It realizes a complex coupling model within a unified model for different domains, so that technologists can work on one model. It ensured the success of YL-1 first launch mission, supports rapid iteration, full validation, and tight design collaboration.展开更多
Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1...Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.展开更多
Applying the modeling method of Grey system and accumulated generating operation of reciprocal number for the problem of lower precision as well as lower adaptability in non-equidistant GM (1, 1) model, the calculatio...Applying the modeling method of Grey system and accumulated generating operation of reciprocal number for the problem of lower precision as well as lower adaptability in non-equidistant GM (1, 1) model, the calculation formulas were deduced and a non-equidistant GRM (1, 1) model generated by accumulated generating operation of reciprocal number was put forward .The grey GRM (1, 1) model can be used in non-equal interval & equal interval time series and has the characteristic of high precision as well as high adaptability. Example validates the practicability and reliability of the proposed model.展开更多
Because the impacts of the factors such as some disturbances are graduallyadded into the system, the grey forecast results will deviate from the systemtrue value. To improve the forecast precision, Pro-Dens Julons pro...Because the impacts of the factors such as some disturbances are graduallyadded into the system, the grey forecast results will deviate from the systemtrue value. To improve the forecast precision, Pro-Dens Julons provided twomethfor-But they had not consider the impact of artificial disturbance. LiZhihua et al. of Qinghua Univ. presented another method. This paper revisesthe method and make it be a spocial case.展开更多
目的研究以专科护士为主导的“1+1+X”协同管理模式对稳定型心绞痛患者病情、自我管理能力的影响。方法方便选取2021年3月—2023年3月聊城市第二人民医院心血管内科收治的86例稳定型心绞痛患者为研究对象,根据不同护理方法分为常规组和...目的研究以专科护士为主导的“1+1+X”协同管理模式对稳定型心绞痛患者病情、自我管理能力的影响。方法方便选取2021年3月—2023年3月聊城市第二人民医院心血管内科收治的86例稳定型心绞痛患者为研究对象,根据不同护理方法分为常规组和协同管理组,各43例。常规组采用常规护理,协同管理组采用以专科护士为主导的“1+1+X”协同管理模式护理,两组均持续护理1个月。观察对比两组患者护理前后生活质量[健康调查简表(MOS Item Short Form Health Survey,SF-36)]、焦虑抑郁心理状况、自我管理能力[冠心病自我管理行为量表(Coronary Artery Disease Self-management Scale,CSMS)]。结果护理后,协同管理组SF-36量表评分高于常规组,差异有统计学意义(P<0.05);协同管理组焦虑自评量表(38.18±3.52)分、抑郁自评量表(39.21±3.24)分均优于常规组的(43.23±3.61)分、(45.03±3.69)分,差异有统计学意义(t=6.568、7.772,P均<0.05);协同管理组CSMS评分高于常规组,差异有统计学意义(P均<0.05)。结论以专科护士为主导的“1+1+X”协同管理模式应用于稳定型心绞痛患者护理可有效提升生活质量,改善不良心理状态,提高自我管理能力。展开更多
基金financially supported by the National Natural Science Foundation of China(42071047,41771035)the Basic Research Innovation Group Project of Gansu Province(22JR5RA129)the Excellent Doctoral Program in Gansu Province(24JRRA152).
文摘Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and water resource management.Artificial forests are an important means of vegetation restoration in the western Loess Plateau,and accurate estimates of their evapotranspiration are essential to the management and development of water use strategies for artificial forests.This study estimated the soil moisture and evapotranspiration based on the HYDRUS-1D model for the artificial Platycladus orientalis(L.)Franco forest in western mountains of Loess Plateau,China from 20 April to 31 October,2023.Moreover,the influence factors were identified by combining the correlation coefficient method and the principal component analysis(PCA)method.The results showed that HYDRUS-1D model had strong applicability in portraying hydrological processes in this area and revealed soil water surplus from 20 April to 31 October,2023.The soil water accumulation was 49.64 mm;the potential evapotranspiration(ET_(p))was 809.67 mm,which was divided into potential evaporation(E_(p);95.07 mm)and potential transpiration(T_(p);714.60 mm);and the actual evapotranspiration(ET_(a))was 580.27 mm,which was divided into actual evaporation(E_(a);68.27 mm)and actual transpiration(T_(a);512.00 mm).From April to October 2023,the ET_(p),E_(p),T_(p),ET_(a),E_(a),and T_(a) first increased and then decreased on both monthly and daily scales,exhibiting a single-peak type trend.The average ratio of T_(a)/ET_(a) was 0.88,signifying that evapotranspiration mainly stemmed from transpiration in this area.The ratio of ET_(a)/ET_(p) was 0.72,indicating that this artificial forest suffered from obvious drought stress.The ET_(p) was significantly positively correlated with ET_(a),and the R^(2) values on the monthly and daily scales were 0.9696 and 0.9635(P<0.05),respectively.Furthermore,ET_(a) was significantly positively correlated with temperature,solar radiation,and wind speed,and negatively correlated with relative humidity and precipitation(P<0.05);and temperature exhibited the highest correlation with ET_(a).Thus,ET_(p) and temperature were the decisive contributors to ET_(a) in this area.The findings provide an effective method for simulating regional evapotranspiration and theoretical reference for water management of artificial forests,and deepen understanding of effects of each influence factors on ET_(a) in arid areas.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2301403 and 2022YFF0711000。
文摘Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.
文摘This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications.
文摘We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.
基金supported by the National Natural Science Foundation of China(7084001290924022)the Ph.D.Thesis Innovation and Excellent Foundation of Nanjing University of Aeronautics and Astronautics(2010)
文摘In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.
基金Supported by Science Research Project of Department of Education of Hubei Province (B20092901)~~
文摘To create a new prediction model, the unbiased GM (1,1) model is optimized by the five-point slide method in this paper. Then, based on the occurrence areas of dce blast in Enshi District during 1995 -2004, the new model and unbiased GM (1, 1 ) model are applied to predict the occurrence areas of rice blast during 2005 -2010. Predicting outcomes show that the prediction accuracy of five-point unbiased sliding optimized GM (1, 1 ) model is higher than the unbiased GM (1,1) model. Finally, combined with the prediction results, the author provides some suggestion for Enshi District in the prevention and control of rice blast in 2010.
文摘Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .
文摘In the R&D phase of Gravity-1(YL-1), a multi-domain modeling and simulation technology based on Modelica language was introduced, which was a recent attempt in the practice of modeling and simulation method for launch vehicles in China. It realizes a complex coupling model within a unified model for different domains, so that technologists can work on one model. It ensured the success of YL-1 first launch mission, supports rapid iteration, full validation, and tight design collaboration.
文摘Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.
文摘Applying the modeling method of Grey system and accumulated generating operation of reciprocal number for the problem of lower precision as well as lower adaptability in non-equidistant GM (1, 1) model, the calculation formulas were deduced and a non-equidistant GRM (1, 1) model generated by accumulated generating operation of reciprocal number was put forward .The grey GRM (1, 1) model can be used in non-equal interval & equal interval time series and has the characteristic of high precision as well as high adaptability. Example validates the practicability and reliability of the proposed model.
文摘Because the impacts of the factors such as some disturbances are graduallyadded into the system, the grey forecast results will deviate from the systemtrue value. To improve the forecast precision, Pro-Dens Julons provided twomethfor-But they had not consider the impact of artificial disturbance. LiZhihua et al. of Qinghua Univ. presented another method. This paper revisesthe method and make it be a spocial case.
文摘目的研究以专科护士为主导的“1+1+X”协同管理模式对稳定型心绞痛患者病情、自我管理能力的影响。方法方便选取2021年3月—2023年3月聊城市第二人民医院心血管内科收治的86例稳定型心绞痛患者为研究对象,根据不同护理方法分为常规组和协同管理组,各43例。常规组采用常规护理,协同管理组采用以专科护士为主导的“1+1+X”协同管理模式护理,两组均持续护理1个月。观察对比两组患者护理前后生活质量[健康调查简表(MOS Item Short Form Health Survey,SF-36)]、焦虑抑郁心理状况、自我管理能力[冠心病自我管理行为量表(Coronary Artery Disease Self-management Scale,CSMS)]。结果护理后,协同管理组SF-36量表评分高于常规组,差异有统计学意义(P<0.05);协同管理组焦虑自评量表(38.18±3.52)分、抑郁自评量表(39.21±3.24)分均优于常规组的(43.23±3.61)分、(45.03±3.69)分,差异有统计学意义(t=6.568、7.772,P均<0.05);协同管理组CSMS评分高于常规组,差异有统计学意义(P均<0.05)。结论以专科护士为主导的“1+1+X”协同管理模式应用于稳定型心绞痛患者护理可有效提升生活质量,改善不良心理状态,提高自我管理能力。