In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n...In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.展开更多
Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content senso...Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective...展开更多
The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the ...The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness.展开更多
Objective To establish correlation models between various physical examination indexes and traditional Chinese medicine(TCM)constitutions,and explore their relationships based on the radial basis function(RBF)neural n...Objective To establish correlation models between various physical examination indexes and traditional Chinese medicine(TCM)constitutions,and explore their relationships based on the radial basis function(RBF)neural network.Methods The raw data of physical examination indexes and TMC constitutions of 650 subjects who underwent a physical examination were cleaned,classified and sorted,on the basis of which valid data were retrieved and categorized into a training dataset and a test dataset.Subsequently,the RBF neural network was applied to the valid samples in the training set to establish correlation models between various physical examination indexes and TCM constitutions.The accuracy and the error margin of the correlation model were then verified using the valid samples in the test set.Results Of all selected samples,the highest accuracy rates were 80% for the blood lipid index-TCM constitution model;100% for the renal function index-TCM constitution model;100% for the blood routine(male)index-TCM constitution model;88.8% for the blood routine(female)index-TCM constitution model;84.1%for the urine routine index-TCM constitution model;and 100% for the blood transfusion index-TCM constitution model.Conclusions The samples selected in this study suggested that there is a strong correlation between physical examination indexes and TCM constitutions,making it feasible to apply the established correlation models to TCM constitution identification.展开更多
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t...This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.展开更多
Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial...Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.展开更多
Based on the operation data from a certain wastewater treatment plant(WWTP) in northeast China, the models of back propagation neural network(BP NN) and radial basis function neural network(RBF NN) have been designed ...Based on the operation data from a certain wastewater treatment plant(WWTP) in northeast China, the models of back propagation neural network(BP NN) and radial basis function neural network(RBF NN) have been designed respectively and the ability of convergence and generalization has been analyzed separately. As for BP NN, the effects of numbers of layers and nodes have been studied; as for RBF NN, the influences of the number of nodes and the RBF′s width have been studied. It is concluded that BP NN has converged much slowly in comparison with RBF NN. The conclusion that the RBF NN is suitable for modeling activated sludge system has been drawn. An automatically optimum design program for RBF NN has been developed, through which the RBF NN model of traditional activated sludge system has been established.展开更多
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur...In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.展开更多
文摘In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.
基金Supported by Science and Technology Plan Project of Guangdong Province(2009B010900026,2009CD058,2009CD078,2009CD079,2009CD080)Special Funds for Support Program of Development of Modern Information Service Industry of Guangdong Province(06120840B0370124)+1 种基金Production and Research Cooperation Program of Shunde District(20090201024)Fund Project of South China Agricultural University(2007K017)~~
文摘Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective...
基金Supported by National Key R&D Program of China(Grant No.2022YFB4701200)National Natural Science Foundation of China(NSFC)(Grant Nos.T2121003,52205004).
文摘The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness.
基金the funding support from the National Key Research and Development Project of China(No.2018YFC1707606)National Natural Science Foundation of China(No.81904324)Youth Foundation of Sichuan Administration of Traditional Chinese Medicine(No.2016Q065).
文摘Objective To establish correlation models between various physical examination indexes and traditional Chinese medicine(TCM)constitutions,and explore their relationships based on the radial basis function(RBF)neural network.Methods The raw data of physical examination indexes and TMC constitutions of 650 subjects who underwent a physical examination were cleaned,classified and sorted,on the basis of which valid data were retrieved and categorized into a training dataset and a test dataset.Subsequently,the RBF neural network was applied to the valid samples in the training set to establish correlation models between various physical examination indexes and TCM constitutions.The accuracy and the error margin of the correlation model were then verified using the valid samples in the test set.Results Of all selected samples,the highest accuracy rates were 80% for the blood lipid index-TCM constitution model;100% for the renal function index-TCM constitution model;100% for the blood routine(male)index-TCM constitution model;88.8% for the blood routine(female)index-TCM constitution model;84.1%for the urine routine index-TCM constitution model;and 100% for the blood transfusion index-TCM constitution model.Conclusions The samples selected in this study suggested that there is a strong correlation between physical examination indexes and TCM constitutions,making it feasible to apply the established correlation models to TCM constitution identification.
基金The National High Technology Research and Development Program of China (863 Program) (No.2003AA517020)
文摘This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.
文摘Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.
文摘Based on the operation data from a certain wastewater treatment plant(WWTP) in northeast China, the models of back propagation neural network(BP NN) and radial basis function neural network(RBF NN) have been designed respectively and the ability of convergence and generalization has been analyzed separately. As for BP NN, the effects of numbers of layers and nodes have been studied; as for RBF NN, the influences of the number of nodes and the RBF′s width have been studied. It is concluded that BP NN has converged much slowly in comparison with RBF NN. The conclusion that the RBF NN is suitable for modeling activated sludge system has been drawn. An automatically optimum design program for RBF NN has been developed, through which the RBF NN model of traditional activated sludge system has been established.
基金supported by the National Natural Science Foundation of China(No.52275090)the Fundamental Research Funds for the Central Universities(No.N2103025)+1 种基金the National Key Research and Development Program of China(No.2020YFB2007802)the Applied Basic Research Program of Liaoning Province(No.2023JH2/101300159)。
文摘In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.
基金This work was supported by the National Natural Science Foundation of China (51507015, 61773402, 61540037, 71271215, 61233008, 51425701, 70921001, 51577014), the Natural Science Foundation of Hunan Province (2015JJ3008), the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (2014ZNDL002), and Hunan Province Science and Technology Program(2015NK3035).