This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found i...This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found in the conventional DC-DC boost converter. The 3-phase grid connected converter with decoupling control give an independent control between active and reactive power using the load current feed-forward. With this technique, the disturbance rejection and the output power quality can be improved. Experiments are conducted with three case studies: 1) a test of the DIDB converter to determine current ripple and voltage gain, 2) a test of the 3-phase grid connected converter to determine DC-link voltage regulation, power factor and total harmonic distortion (THD), and 3) a test of the overall system with a 7.5 kW wind turbine simulator by step and various input wind speeds to determine the output power at the grid side and verify the maximum peak power tracking (MPPT) performance. The results can confirm that the DIDB converter gives lower ripple current and higher voltage gain than the conventional converter. For the grid side, the 3-phase grid connected converter can regulate the DC-link with fast dynamic response to disturbance rejection and low overshoot while complying with the THD standard defined in IEEE 519-1992. In addition, the MPPT controller is able to achieve the maximum energy capture with the various input wind speeds.展开更多
Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar...Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.展开更多
A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditi...A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.展开更多
In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a thre...In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.展开更多
双馈/直驱风机混合接入模块化多电平高压直流输电(modular multi-level converter based HVDC,MMC-HVDC)的次同步振荡事件频繁发生,已有双馈或直驱某一种风机与MMC-HVDC交互产生振荡的研究,但鲜有针对双馈/直驱风机混合接入MMC-HVDC的...双馈/直驱风机混合接入模块化多电平高压直流输电(modular multi-level converter based HVDC,MMC-HVDC)的次同步振荡事件频繁发生,已有双馈或直驱某一种风机与MMC-HVDC交互产生振荡的研究,但鲜有针对双馈/直驱风机混合接入MMC-HVDC的次同步振荡分析与抑制措施研究。该文首先阐述并分析了某双馈/直驱风机混合接入MMC-HVDC后发生次同步振荡实际事件的特征与原因,通过阻抗相量方法研究了双馈/直驱风机频域阻抗的交互影响方式。研究表明,在双馈或直驱风机单独接入MMC-HVDC不存在振荡风险的条件下,双馈和直驱风机并联接入后依然可能存在振荡风险。最后,根据电网调度运行的实际要求,提出了考虑机组启停数量调配的临时抑制振荡策略。展开更多
针对大规模近海风电场地理分布上高度分散以及主要采用双馈式或直驱/半直驱式风电机组的特点,提出了相应的电压源型变流器的高压直流(voltage source converter based HVDC,VSC-HVDC)并网传输拓扑结构,并设计了相应的控制策略。为验证...针对大规模近海风电场地理分布上高度分散以及主要采用双馈式或直驱/半直驱式风电机组的特点,提出了相应的电压源型变流器的高压直流(voltage source converter based HVDC,VSC-HVDC)并网传输拓扑结构,并设计了相应的控制策略。为验证所提方案的可行性,利用Matlab/Simulink构建了一个近海风电场的5端口VSC-HVDC并网传输系统,并进行了系列仿真。仿真结果表明,所提VSC-HVDC方案可为大规模近海风电场的并网传输提供优化的解决方案。展开更多
文摘This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found in the conventional DC-DC boost converter. The 3-phase grid connected converter with decoupling control give an independent control between active and reactive power using the load current feed-forward. With this technique, the disturbance rejection and the output power quality can be improved. Experiments are conducted with three case studies: 1) a test of the DIDB converter to determine current ripple and voltage gain, 2) a test of the 3-phase grid connected converter to determine DC-link voltage regulation, power factor and total harmonic distortion (THD), and 3) a test of the overall system with a 7.5 kW wind turbine simulator by step and various input wind speeds to determine the output power at the grid side and verify the maximum peak power tracking (MPPT) performance. The results can confirm that the DIDB converter gives lower ripple current and higher voltage gain than the conventional converter. For the grid side, the 3-phase grid connected converter can regulate the DC-link with fast dynamic response to disturbance rejection and low overshoot while complying with the THD standard defined in IEEE 519-1992. In addition, the MPPT controller is able to achieve the maximum energy capture with the various input wind speeds.
文摘Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.
文摘In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.
文摘双馈/直驱风机混合接入模块化多电平高压直流输电(modular multi-level converter based HVDC,MMC-HVDC)的次同步振荡事件频繁发生,已有双馈或直驱某一种风机与MMC-HVDC交互产生振荡的研究,但鲜有针对双馈/直驱风机混合接入MMC-HVDC的次同步振荡分析与抑制措施研究。该文首先阐述并分析了某双馈/直驱风机混合接入MMC-HVDC后发生次同步振荡实际事件的特征与原因,通过阻抗相量方法研究了双馈/直驱风机频域阻抗的交互影响方式。研究表明,在双馈或直驱风机单独接入MMC-HVDC不存在振荡风险的条件下,双馈和直驱风机并联接入后依然可能存在振荡风险。最后,根据电网调度运行的实际要求,提出了考虑机组启停数量调配的临时抑制振荡策略。
文摘针对大规模近海风电场地理分布上高度分散以及主要采用双馈式或直驱/半直驱式风电机组的特点,提出了相应的电压源型变流器的高压直流(voltage source converter based HVDC,VSC-HVDC)并网传输拓扑结构,并设计了相应的控制策略。为验证所提方案的可行性,利用Matlab/Simulink构建了一个近海风电场的5端口VSC-HVDC并网传输系统,并进行了系列仿真。仿真结果表明,所提VSC-HVDC方案可为大规模近海风电场的并网传输提供优化的解决方案。