The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg...The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.展开更多
A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditi...A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.展开更多
This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the ...This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.展开更多
Transformerless grid-connected inverters offer greater efficiencies when transferring power from renewable energy sources to the electrical grid.If the grid-inverter connection is done with an LCL filter,high attenuat...Transformerless grid-connected inverters offer greater efficiencies when transferring power from renewable energy sources to the electrical grid.If the grid-inverter connection is done with an LCL filter,high attenuation of switching harmonics is achieved while preserving a small-size output filter.However,damping must be included in the controller to assure closed-loop stability.This paper proposes a reference computation methodology for the inverter-side current feedback in a photovoltaic(PV)generation system connected to the grid through an LCL filter.Theoretical analysis of the closed-loop system stability and of the steady-state performance are presented as well as experimental validation of the closed-loop performance.The feedback controller includes active damping and relies on a resonant control structure which improves the ability of dealing with grid harmonic distortion.The controller uses a reduced set of measurements,which requires the inverter-side current and grid voltage only,and assures a power factor close to unity.展开更多
模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联...模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联网状态和孤岛状态间相互转换的过程,并设计了一种基于本地电气量的MMC控制模式切换策略。之后,对MMC无源供电控制器进行改进,设计了一种无需切换控制模式的MMC下垂控制策略。最后,通过PSCAD仿真对上述2种转换策略进行验证和比较,结果表明2种策略均能使MMC在联网状态和孤岛状态间稳定转换。2种策略各有优缺点,实际应用中MMC需依据具体的控制目标选取合适的策略。展开更多
针对MMC(modular multilevel converter)型VSC-HVDC(voltage source converter-high voltage direct current)在并网运行模式与孤岛运行模式相互切换过程中易于发生切换失败、冲击电流大的难题,将虚拟同步控制运用到MMC的运行模式切换...针对MMC(modular multilevel converter)型VSC-HVDC(voltage source converter-high voltage direct current)在并网运行模式与孤岛运行模式相互切换过程中易于发生切换失败、冲击电流大的难题,将虚拟同步控制运用到MMC的运行模式切换中。在虚拟同步控制和MMC基本原理的基础上,提出基于虚拟同步控制的MMC-HVDC(modular multilevel converter-high voltage direct current)无缝切换控制方法。引入的虚拟同步控制无需采用专门的同步控制电路,并网前可自动与电网同步;并网后能准确跟随电网频率,实现友好并网。当电网出现故障或需要检修时,MMC仍可孤岛运行,从而实现了运行模式的无缝切换。PSCAD/EMTDC平台下的仿真结果验证了所述控制策略的可行性和有效性。展开更多
因在传统非隔离型光伏并网逆变器中存在交、直流解耦拓扑中点电压悬浮问题,导致漏电流无法被有效抑制,因此提出一种有源T型中点箝位控制TAC-Heric(T-type active clamp Heric)。基于传统Heric拓扑技术,在其拓扑分压电容中点与续流桥臂...因在传统非隔离型光伏并网逆变器中存在交、直流解耦拓扑中点电压悬浮问题,导致漏电流无法被有效抑制,因此提出一种有源T型中点箝位控制TAC-Heric(T-type active clamp Heric)。基于传统Heric拓扑技术,在其拓扑分压电容中点与续流桥臂中点之间添加T型通路,以此来对中点电压进行有效箝位并抑制漏电流。此外,基于TACHeric控制,对PI、PR以及QPR控制器的特性进行分析,在此基础上,采用PI+QPR综合控制策略,有效降低了并网电流谐波畸变率,提高了系统的电能质量。最后,理论和仿真分析验证了TAC-Heric能更好地抑制漏电流以及所提控制策略的可行性。展开更多
基金supported by National Natural Science Foundation of China(Project No.52077079).
文摘The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.
文摘This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.
文摘Transformerless grid-connected inverters offer greater efficiencies when transferring power from renewable energy sources to the electrical grid.If the grid-inverter connection is done with an LCL filter,high attenuation of switching harmonics is achieved while preserving a small-size output filter.However,damping must be included in the controller to assure closed-loop stability.This paper proposes a reference computation methodology for the inverter-side current feedback in a photovoltaic(PV)generation system connected to the grid through an LCL filter.Theoretical analysis of the closed-loop system stability and of the steady-state performance are presented as well as experimental validation of the closed-loop performance.The feedback controller includes active damping and relies on a resonant control structure which improves the ability of dealing with grid harmonic distortion.The controller uses a reduced set of measurements,which requires the inverter-side current and grid voltage only,and assures a power factor close to unity.
文摘模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联网状态和孤岛状态间相互转换的过程,并设计了一种基于本地电气量的MMC控制模式切换策略。之后,对MMC无源供电控制器进行改进,设计了一种无需切换控制模式的MMC下垂控制策略。最后,通过PSCAD仿真对上述2种转换策略进行验证和比较,结果表明2种策略均能使MMC在联网状态和孤岛状态间稳定转换。2种策略各有优缺点,实际应用中MMC需依据具体的控制目标选取合适的策略。
文摘针对MMC(modular multilevel converter)型VSC-HVDC(voltage source converter-high voltage direct current)在并网运行模式与孤岛运行模式相互切换过程中易于发生切换失败、冲击电流大的难题,将虚拟同步控制运用到MMC的运行模式切换中。在虚拟同步控制和MMC基本原理的基础上,提出基于虚拟同步控制的MMC-HVDC(modular multilevel converter-high voltage direct current)无缝切换控制方法。引入的虚拟同步控制无需采用专门的同步控制电路,并网前可自动与电网同步;并网后能准确跟随电网频率,实现友好并网。当电网出现故障或需要检修时,MMC仍可孤岛运行,从而实现了运行模式的无缝切换。PSCAD/EMTDC平台下的仿真结果验证了所述控制策略的可行性和有效性。
文摘因在传统非隔离型光伏并网逆变器中存在交、直流解耦拓扑中点电压悬浮问题,导致漏电流无法被有效抑制,因此提出一种有源T型中点箝位控制TAC-Heric(T-type active clamp Heric)。基于传统Heric拓扑技术,在其拓扑分压电容中点与续流桥臂中点之间添加T型通路,以此来对中点电压进行有效箝位并抑制漏电流。此外,基于TACHeric控制,对PI、PR以及QPR控制器的特性进行分析,在此基础上,采用PI+QPR综合控制策略,有效降低了并网电流谐波畸变率,提高了系统的电能质量。最后,理论和仿真分析验证了TAC-Heric能更好地抑制漏电流以及所提控制策略的可行性。