The study on three Pb Ca Sn Al alloys with 0.08%, 0.4% and 1.0% of Ce indicates that the addition of Ce results in an obvious increase in the tensile strength and hardness of the alloys, an increase in the overpotenti...The study on three Pb Ca Sn Al alloys with 0.08%, 0.4% and 1.0% of Ce indicates that the addition of Ce results in an obvious increase in the tensile strength and hardness of the alloys, an increase in the overpotentials of hydrogen and oxygen evolution and the corrosion resistance as well. The study on the corrosion film formed on the alloys by cyclic voltammetry shows that the addition of Ce slows down the formation of corrosion film. It is therefore concluded from the experimental results that the addition of Ce can increase the tensile strength and HB of Pb Ca alloy and the tensile strength and HB of the alloy increase with the increase of Ce; the addition of Ce also increases the hydrogen and oxygen evolution overpotentials of Pb Ca alloy, and when the content of Ce is 1.0%, the alloy has the highest hydrogen and oxygen evolution overpoteatials; the addition of Ce improves the anticorrosion capability of the alloy, and when the content Ce is 1.0%, the alloy has the best anticorrosion capability; and the addition of Ce also slows down the formation of corrosion film.展开更多
文摘The study on three Pb Ca Sn Al alloys with 0.08%, 0.4% and 1.0% of Ce indicates that the addition of Ce results in an obvious increase in the tensile strength and hardness of the alloys, an increase in the overpotentials of hydrogen and oxygen evolution and the corrosion resistance as well. The study on the corrosion film formed on the alloys by cyclic voltammetry shows that the addition of Ce slows down the formation of corrosion film. It is therefore concluded from the experimental results that the addition of Ce can increase the tensile strength and HB of Pb Ca alloy and the tensile strength and HB of the alloy increase with the increase of Ce; the addition of Ce also increases the hydrogen and oxygen evolution overpotentials of Pb Ca alloy, and when the content of Ce is 1.0%, the alloy has the highest hydrogen and oxygen evolution overpoteatials; the addition of Ce improves the anticorrosion capability of the alloy, and when the content Ce is 1.0%, the alloy has the best anticorrosion capability; and the addition of Ce also slows down the formation of corrosion film.