Railway power system is an inseparable part of the power system,therefore,the intelligent architecture of the railway power system should also be focused on.The unique power supply characteristics of the railway power...Railway power system is an inseparable part of the power system,therefore,the intelligent architecture of the railway power system should also be focused on.The unique power supply characteristics of the railway power system are analyzed and integrated railway smart grid architecture based on energy routers is proposed.Importantly,three corresponding resilient mode control methods are suggested for the proposed architecture.In the fourth section,a simulation model corresponding to the resilient control mode is built and the simulation results prove the feasibility of the proposed control mode.Equally,for the novel network-connected backbone router(NCBR),a 1000 kVA,27.5/10 kV NCBR engineering prototype is used to prove its effectiveness in practical applications.Finally,a differentiation analysis is given,followed by conclusions regarding the traditional power system and proposed system.展开更多
Based on open grid service architecture (OGSA) and Globus Toolkit 3. 0 (GT3), a manufacturing grid (MG) is proposed to realize resource sharing and collaborative working among manufacturing enterprises. Nevertheless, ...Based on open grid service architecture (OGSA) and Globus Toolkit 3. 0 (GT3), a manufacturing grid (MG) is proposed to realize resource sharing and collaborative working among manufacturing enterprises. Nevertheless, resource management in MG is much more complicated than that in other grid applications due to the geographically distributed manufacturing resources, which range from CAD, CAPP and CAE to various kinds of machine tools. With the interaction of manufacturing grid information service (MGIS, developed by ourselves) and globus resource allocation manager (GRAM, provided by GT3), a resource management framework is presented to perform the functions of resource encapsulation, registry, discovery and monitoring. Furthermore, the application architecture and an example are depicted to illustrate the utilization of the resource management system.展开更多
In this paper,a compact mathematical model having an elegant structure,together with a generic control framework,are proposed for generic power systems dominated by power converters that are interconnected through a p...In this paper,a compact mathematical model having an elegant structure,together with a generic control framework,are proposed for generic power systems dominated by power converters that are interconnected through a passive transmission and distribution(T&D)grid,by adopting the port-Hamiltonian(pH)systems theory and the fundamental circuit theory.The models of generic T&D lines are developed and then the model of a generic T&D grid is established.With the proposed control framework,the controlled converters are proven to be passive and Input-to-State Stable(ISS).The compact mathematical model is scalable and can be applied to power systems with multiple power electronic converters with generic passive controllers,passive local loads,and different types of passive T&D lines connected in a meshed configuration without self-loops,so it is very generic.Moreover,the resulting power system is proven to be ISS as well.The analysis is carried out without assumptions on constant frequency/voltage,constant loads,and/or lossless networks,except the need of passivity for all parts involved,and without using the Clarke/Park transformations or the graph theory.To simplify the presentation,three-phase balanced systems are adopted but the results can be easily adapted for single-phase or unbalanced three-phase systems.展开更多
NAREGI is a 5-year Japanese National Grid Project during 2003--2007, whose chief aim is to develop a set of grid middleware to serve as a basis for future e-Science. NAREGI also aims to lead the way in standardization...NAREGI is a 5-year Japanese National Grid Project during 2003--2007, whose chief aim is to develop a set of grid middleware to serve as a basis for future e-Science. NAREGI also aims to lead the way in standardization of grid middleware, based on the OGSA architecture. Its super-scheduler is based on the proposed OGSA-EMS Architecture, in that it becomes the first working implementation that implements the documented component relationships within the OGSA-EMS architecture document v.l.0. Through the efforts and experience in the design and implementation, it has been confirmed that the documented OGSA-EMS architecture is quite feasible, but will require significant amount of refinement and speed improvements to finalize its detailed specifications. The super-scheduler also supports co-allocation across multiple sites to support automated execution of grid-based MPIs that execute across machines. Such a resource allocation requires sophisticated interactions between the OGSA-EMS components not covered in the current OGSA-EMS architecture, some of which are non-trivial. Overall, job scheduling with OGSA-EMS has proven to not only work, but also that its job allocation and execution time is within reasonable bounds.展开更多
基金Supported by the Zhuhai City Industry-University-Research Project(ZH22017001200019PWC).
文摘Railway power system is an inseparable part of the power system,therefore,the intelligent architecture of the railway power system should also be focused on.The unique power supply characteristics of the railway power system are analyzed and integrated railway smart grid architecture based on energy routers is proposed.Importantly,three corresponding resilient mode control methods are suggested for the proposed architecture.In the fourth section,a simulation model corresponding to the resilient control mode is built and the simulation results prove the feasibility of the proposed control mode.Equally,for the novel network-connected backbone router(NCBR),a 1000 kVA,27.5/10 kV NCBR engineering prototype is used to prove its effectiveness in practical applications.Finally,a differentiation analysis is given,followed by conclusions regarding the traditional power system and proposed system.
基金TheDevelopingFoundationofShanghaiScienceandTechnologyCommittee (No .0 2 5 1110 5 5 ) .
文摘Based on open grid service architecture (OGSA) and Globus Toolkit 3. 0 (GT3), a manufacturing grid (MG) is proposed to realize resource sharing and collaborative working among manufacturing enterprises. Nevertheless, resource management in MG is much more complicated than that in other grid applications due to the geographically distributed manufacturing resources, which range from CAD, CAPP and CAE to various kinds of machine tools. With the interaction of manufacturing grid information service (MGIS, developed by ourselves) and globus resource allocation manager (GRAM, provided by GT3), a resource management framework is presented to perform the functions of resource encapsulation, registry, discovery and monitoring. Furthermore, the application architecture and an example are depicted to illustrate the utilization of the resource management system.
基金supported by NSF,USA,under award#1810105 and Foundation for Research Support of the State of Rio Grande do Sul(FAPERGS),BR,under grant number 21/2551-0002158-6,CfP PqG.2021。
文摘In this paper,a compact mathematical model having an elegant structure,together with a generic control framework,are proposed for generic power systems dominated by power converters that are interconnected through a passive transmission and distribution(T&D)grid,by adopting the port-Hamiltonian(pH)systems theory and the fundamental circuit theory.The models of generic T&D lines are developed and then the model of a generic T&D grid is established.With the proposed control framework,the controlled converters are proven to be passive and Input-to-State Stable(ISS).The compact mathematical model is scalable and can be applied to power systems with multiple power electronic converters with generic passive controllers,passive local loads,and different types of passive T&D lines connected in a meshed configuration without self-loops,so it is very generic.Moreover,the resulting power system is proven to be ISS as well.The analysis is carried out without assumptions on constant frequency/voltage,constant loads,and/or lossless networks,except the need of passivity for all parts involved,and without using the Clarke/Park transformations or the graph theory.To simplify the presentation,three-phase balanced systems are adopted but the results can be easily adapted for single-phase or unbalanced three-phase systems.
文摘NAREGI is a 5-year Japanese National Grid Project during 2003--2007, whose chief aim is to develop a set of grid middleware to serve as a basis for future e-Science. NAREGI also aims to lead the way in standardization of grid middleware, based on the OGSA architecture. Its super-scheduler is based on the proposed OGSA-EMS Architecture, in that it becomes the first working implementation that implements the documented component relationships within the OGSA-EMS architecture document v.l.0. Through the efforts and experience in the design and implementation, it has been confirmed that the documented OGSA-EMS architecture is quite feasible, but will require significant amount of refinement and speed improvements to finalize its detailed specifications. The super-scheduler also supports co-allocation across multiple sites to support automated execution of grid-based MPIs that execute across machines. Such a resource allocation requires sophisticated interactions between the OGSA-EMS components not covered in the current OGSA-EMS architecture, some of which are non-trivial. Overall, job scheduling with OGSA-EMS has proven to not only work, but also that its job allocation and execution time is within reasonable bounds.