Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of...Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.展开更多
The Filtering Grid Scale (FGS) of sub-grid scale models does not match with the theoretical Proper FGS (PFGS) because of the improper mesh. Therefore, proper Large Eddy Simulation (LES) Mesh is very decisive for...The Filtering Grid Scale (FGS) of sub-grid scale models does not match with the theoretical Proper FGS (PFGS) because of the improper mesh. Therefore, proper Large Eddy Simulation (LES) Mesh is very decisive for better results and more economical cost. In this work, the purpose is to provide an adaptive control strategy for proper LES mesh with turbulence theory and CFD methods. A new expression of PFGS is proposed on the basis of -5/3 law of inertial sub-range and the proper mesh of LES can be built directly from the adjustment of RANS mesh. A benchmark of the backward facing step flow at Re = 5147 is provided for application and verification. There are three kinds of mesh sizes, including the RANS mesh, LAM (LES of adaptive-control mesh), LFM (LES of fine mesh), employed here. The grid number of LAM is smaller than those of LFM evidently, and the results of LAM are in a good agreement with those of DNS and experiments. It is revealed that the results of LAM are very close to those of LFM. The conclusions provide positive evidences for the novel strategy.展开更多
Through simulation of summer and winter precipitation cases in China, the cloud precipitation schemes of model were examined. Results indicate that it is discrepant between convective precipitation simulated by the Ka...Through simulation of summer and winter precipitation cases in China, the cloud precipitation schemes of model were examined. Results indicate that it is discrepant between convective precipitation simulated by the Kain-Fritsch (KF) scheme and Betts-Miller (BM) scheme in summer, the former scheme is better than the latter in this case. The ambient atmosphere may be varied by different convective schemes. The air is wetter and the updraft is stronger in the KF scheme than in the BM scheme, which can induce the more grid scale precipitation in the KF scheme, i.e., the different cumulus schemes may have the different and important effect on the grid scale precipitation. However, there is almost no convective rain in winter in northern China, so the effect of cumulus precipitation on the grid scale precipitation can be disregarded. Therefore, the gird scale precipitation is primary in the winter of northern China.展开更多
Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update appro...Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update approach based on the spring analogy method is presented for the effective treatment of mesh moving boundary problems. The proposed mesh update technique is developed to avoid the generation of squashed invalid elements and maintain mesh quality by considering each element shape and grid scale to the definition of the spring stiffness. The method is applied to several 2D and 3D boundary correction problems for fully unstructured meshes and evaluated by a mesh quality indicator. With these applications,it is demonstrated that the present method preserves mesh quality even under large motions of bodies. We highlight the advantages of this method with respect to robustness and mesh quality.展开更多
基金Under the auspices of Special Project of National Key Research and Development Program(No.2016YFD0200301)National Natural Science Foundation of China(No.41571206)Special Project of National Science and Technology Basic Work(No.2015FY110700-S2)
文摘Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.
基金Supported by The Special Coordination Fund(SCF)for Pro-moting Science and Technology commissioned by the Ministry of Education,Culture,Sports,Science and Technology(MEXT)of Japan
文摘AIM: To verify the performance of a lesion size measurement system through a clinical study.
基金Project supported by the National Natural Science Foundation of china (Grant No. 50776056)the National High Technology Research and Development of China (863 Program,Grant No. 2009AA05Z201)
文摘The Filtering Grid Scale (FGS) of sub-grid scale models does not match with the theoretical Proper FGS (PFGS) because of the improper mesh. Therefore, proper Large Eddy Simulation (LES) Mesh is very decisive for better results and more economical cost. In this work, the purpose is to provide an adaptive control strategy for proper LES mesh with turbulence theory and CFD methods. A new expression of PFGS is proposed on the basis of -5/3 law of inertial sub-range and the proper mesh of LES can be built directly from the adjustment of RANS mesh. A benchmark of the backward facing step flow at Re = 5147 is provided for application and verification. There are three kinds of mesh sizes, including the RANS mesh, LAM (LES of adaptive-control mesh), LFM (LES of fine mesh), employed here. The grid number of LAM is smaller than those of LFM evidently, and the results of LAM are in a good agreement with those of DNS and experiments. It is revealed that the results of LAM are very close to those of LFM. The conclusions provide positive evidences for the novel strategy.
基金Supported by Foundation from the Institute of Tropical & Marine Meteorology in 2004the National Basic Research Program of China (2004CB418306).
文摘Through simulation of summer and winter precipitation cases in China, the cloud precipitation schemes of model were examined. Results indicate that it is discrepant between convective precipitation simulated by the Kain-Fritsch (KF) scheme and Betts-Miller (BM) scheme in summer, the former scheme is better than the latter in this case. The ambient atmosphere may be varied by different convective schemes. The air is wetter and the updraft is stronger in the KF scheme than in the BM scheme, which can induce the more grid scale precipitation in the KF scheme, i.e., the different cumulus schemes may have the different and important effect on the grid scale precipitation. However, there is almost no convective rain in winter in northern China, so the effect of cumulus precipitation on the grid scale precipitation can be disregarded. Therefore, the gird scale precipitation is primary in the winter of northern China.
基金the National Natural Science Foundation of China(No.50778111)the Doctoral Disciplinary Special Research Project of Chinese Ministry of Education(No.200802480056)the Key Project of Fund of Science Technology Development of Shanghai(No.07JC14023)
文摘Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update approach based on the spring analogy method is presented for the effective treatment of mesh moving boundary problems. The proposed mesh update technique is developed to avoid the generation of squashed invalid elements and maintain mesh quality by considering each element shape and grid scale to the definition of the spring stiffness. The method is applied to several 2D and 3D boundary correction problems for fully unstructured meshes and evaluated by a mesh quality indicator. With these applications,it is demonstrated that the present method preserves mesh quality even under large motions of bodies. We highlight the advantages of this method with respect to robustness and mesh quality.