期刊文献+
共找到773篇文章
< 1 2 39 >
每页显示 20 50 100
Study on Joint Method of 3D Acoustic Emission Source Localization Simplex and Grid Search Scanning
1
作者 Liu Wei-jian Wang Hao-nan +4 位作者 Xiao Yang Hou Meng-jie Dong Sen-sen Zhang Zhi-zeng Lu Gao-ming 《Applied Geophysics》 SCIE CSCD 2024年第3期456-467,617,共13页
Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-... Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-dimensional(3D)AE source localization simplex method and grid search scanning.Using the concept of the geometry of simplexes,tetrahedral iterations were first conducted to narrow down the suspected source region.This is followed by a process of meshing the region and node searching to scan for optimal solutions,until the source location is determined.The resulting algorithm was tested using the artificial excitation source localization and uniaxial compression tests,after which the localization results were compared with the simplex and exhaustive methods.The results revealed that the localization obtained using the proposed method is more stable and can be effectively avoided compared with the simplex localization method.Furthermore,compared with the global scanning method,the proposed method is more efficient,with an average time of 10%–20%of the global scanning localization algorithm.Thus,the proposed algorithm is of great significance for laboratory research focused on locating rupture damages sustained by large-sized rock masses or test blocks. 展开更多
关键词 acoustic emission simplex form grid search scan locating the epicenter
下载PDF
A Robust Tuned Random Forest Classifier Using Randomized Grid Search to Predict Coronary Artery Diseases
2
作者 Sameh Abd El-Ghany A.A.Abd El-Aziz 《Computers, Materials & Continua》 SCIE EI 2023年第5期4633-4648,共16页
Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources ... Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources of death all over theworld.Cardiovascular deterioration is a challenge,especially in youthful and rural countries where there is an absence of humantrained professionals.Since heart diseases happen without apparent signs,high-level detection is desirable.This paper proposed a robust and tuned random forest model using the randomized grid search technique to predictCAD.The proposed framework increases the ability of CADpredictions by tracking down risk pointers and learning the confusing joint efforts between them.Nowadays,the healthcare industry has a lot of data but needs to gain more knowledge.Our proposed framework is used for extracting knowledge from data stores and using that knowledge to help doctors accurately and effectively diagnose heart disease(HD).We evaluated the proposed framework over two public databases,Cleveland and Framingham datasets.The datasets were preprocessed by using a cleaning technique,a normalization technique,and an outlier detection technique.Secondly,the principal component analysis(PCA)algorithm was utilized to lessen the feature dimensionality of the two datasets.Finally,we used a hyperparameter tuning technique,randomized grid search,to tune a random forest(RF)machine learning(ML)model.The randomized grid search selected the best parameters and got the ideal CAD analysis.The proposed framework was evaluated and compared with traditional classifiers.Our proposed framework’s accuracy,sensitivity,precision,specificity,and f1-score were 100%.The evaluation of the proposed framework showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing frameworks. 展开更多
关键词 Coronary artery disease tuned random forest randomized grid search CLASSIFIER
下载PDF
Grid Search for Predicting Coronary Heart Disease by Tuning Hyper-Parameters 被引量:2
3
作者 S.Prabu B.Thiyaneswaran +2 位作者 M.Sujatha C.Nalini Sujatha Rajkumar 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期737-749,共13页
Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years.Coronary cardiovascular(CHD)is a kind of heart and blood vascular disease.Predicting this sort of cardiac illness leads ... Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years.Coronary cardiovascular(CHD)is a kind of heart and blood vascular disease.Predicting this sort of cardiac illness leads to more precise decisions for cardiac disorders.Implementing Grid Search Optimization(GSO)machine training models is therefore a useful way to forecast the sickness as soon as possible.The state-of-the-art work is the tuning of the hyperparameter together with the selection of the feature by utilizing the model search to minimize the false-negative rate.Three models with a cross-validation approach do the required task.Feature Selection based on the use of statistical and correlation matrices for multivariate analysis.For Random Search and Grid Search models,extensive comparison findings are produced utilizing retrieval,F1 score,and precision measurements.The models are evaluated using the metrics and kappa statistics that illustrate the three models’comparability.The study effort focuses on optimizing function selection,tweaking hyperparameters to improve model accuracy and the prediction of heart disease by examining Framingham datasets using random forestry classification.Tuning the hyperparameter in the model of grid search thus decreases the erroneous rate achieves global optimization. 展开更多
关键词 grid search coronary heart disease(CHD) machine learning feature selection hyperparameter tuning
下载PDF
基于Gridsearch-SVM梯形区域极点分类的故障诊断
4
作者 杜紫薇 姚波 王福忠 《井冈山大学学报(自然科学版)》 2023年第1期8-13,共6页
针对一类线性定常系统,基于梯形区域极点配置,给出了执行器部件故障诊断的一种方法。首先,利用极点观测器,通过测量系统的状态,得到极点的动态信息;其次,根据模拟各通道执行器故障,实时采集闭环系统的极点信息,形成极点分类数据库;最后... 针对一类线性定常系统,基于梯形区域极点配置,给出了执行器部件故障诊断的一种方法。首先,利用极点观测器,通过测量系统的状态,得到极点的动态信息;其次,根据模拟各通道执行器故障,实时采集闭环系统的极点信息,形成极点分类数据库;最后,利用支持向量机算法(Support Vector Machine,SVM)根据不同通道发生故障时极点所处位置不同,设计极点分类器,对极点进行分类,实现对系统的故障诊断。针对SVM中惩罚因子和核宽度系数需要依靠先验知识的缺陷,采用Grid search优化其参数,缩小寻优范围。仿真结果表明设计方案的可行性以及故障诊断的有效性。 展开更多
关键词 极点观测器 极点分类器 支持向量机 网格搜索法 区域极点配置 故障诊断
下载PDF
The Grid Search Algorithm of Tectonic Stress Tensor Based on Focal Mechanism Data and Its Application in the Boundary Zone of China, Vietnam and Laos 被引量:60
5
作者 Yongge Wan Shuzhong Sheng +2 位作者 Jichao Huang Xiang Li Xin Chen 《Journal of Earth Science》 SCIE CAS CSCD 2016年第5期777-785,共9页
Stress field plays a key role in geodynamics. In this study, an algorithm to determine the stress tensor and its confidence range from focal mechanism data by using grid search method was proposed. The experiment uses... Stress field plays a key role in geodynamics. In this study, an algorithm to determine the stress tensor and its confidence range from focal mechanism data by using grid search method was proposed. The experiment uses artificial focal mechanism data which were generated by extensional, compression and strike-slip stress regime and different level of noise, shows that the precision of the estimated stress tensor based on this algorithm is greatly improved compared with traditional algorithms. This algorithm has three advantages:(1) The global optimal solution of the stress tensor is determined by fine grid search of 1o×1o×1o×0.01 and local minimum value is avoided; (2) precision of focal mechanism data can be considered, i.e., different weight of the focal mechanism data contributes differently to the process of determining stress tensor; (3) the confidence range of the determined stress tensor can be obtained by using F-test. We apply this algorithm in the boundary zone of China, Vietnam and Laos, and obtain the stress field with SSE-NNW compressive stress direction and NEE-SWW extensional stress direction. The stress ratio is 0.6, which shows that the eigen values of the stress tensor are nearly in arithmetic sequence. The stress field in this region is consistent with the left-lateral strike slip of the Dienbien-Lauangphrabang arc fault. The result will be helpful in studying the geological dynamic process in this region. 展开更多
关键词 stress tensor grid search focal mechanism uncertainty.
原文传递
基于Grid-Search_PSO优化SVM回归预测矿井涌水量 被引量:13
6
作者 刘佳 施龙青 +1 位作者 韩进 滕超 《煤炭技术》 CAS 北大核心 2015年第8期184-186,共3页
为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预... 为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预测值与实测值之间的偏差比ARIMA时间序列法要小很多。可见在影响矿井涌水量各种因素值具备的情况下,SVM非线性回归预测所建立的模型能够更准确地预测矿井的涌水量,在矿井安全生产中具有很大的应用价值。 展开更多
关键词 支持向量机 网格搜索法 粒子群优化算法 矿井涌水量 非线性回归预测 大海则煤矿
下载PDF
A Rapid Grid Search Method for Solving Dynamic Programming Problems in Economics
7
作者 Hui He Hao Zhang 《Frontiers of Economics in China-Selected Publications from Chinese Universities》 2013年第2期260-271,共12页
We introduce a rapid grid search method in solving dynamic program- ming problems in economics. Compared to mainstream grid search methods, by us- ing local information of the Bellman equation, this method can signifi... We introduce a rapid grid search method in solving dynamic program- ming problems in economics. Compared to mainstream grid search methods, by us- ing local information of the Bellman equation, this method can significantly increase the efficiency in solving dynamic programming problems by reducing the grid points searched in the control space. 展开更多
关键词 dynamic programming Bellman equation grid search CONCAVITY search-ing efficiency
原文传递
Research on Low Voltage Series Arc Fault Prediction Method Based on Multidimensional Time-Frequency Domain Characteristics
8
作者 Feiyan Zhou HuiYin +4 位作者 Chen Luo Haixin Tong KunYu Zewen Li Xiangjun Zeng 《Energy Engineering》 EI 2023年第9期1979-1990,共12页
The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sus... The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper. 展开更多
关键词 Low voltage distribution systems series fault arcing grid search time-frequency characteristics
下载PDF
Grid-Search和PSO优化的SVM在Shibor回归预测中的应用研究 被引量:1
9
作者 张剑 王波 《经济数学》 2017年第2期84-88,共5页
作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search... 作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search)和粒子群(PSO)算法来优化SVM的参数c和g.从而将参数优化后的SVM非线性回归预测法与基于传统ARIMA时间序列预测结果进行对比分析.实验表明,优化后的SVM回归预测方法比ARIMA时间序列方法更精确,在实际中具有很大的应用价值. 展开更多
关键词 机器学习 非线性回归预测 支持向量机 网格搜索法 粒子群算法 SHIBOR
下载PDF
METADATA EXPANDED SEMANTICALLY BASED RESOURCE SEARCH IN EDUCATION GRID
10
作者 孙霞 郑庆华 《Journal of Pharmaceutical Analysis》 SCIE CAS 2005年第2期33-36,共4页
With the rapid increase of educational resources, how to search for necessary educational resource quickly is one of most important issues. Educational resources have the characters of distribution and heterogeneity, ... With the rapid increase of educational resources, how to search for necessary educational resource quickly is one of most important issues. Educational resources have the characters of distribution and heterogeneity, which are the same as the characters of Grid resources. Therefore, the technology of Grid resources search was adopted to implement the educational resources search. Motivated by the insufficiency of currently resources search methods based on metadata, a method of extracting semantic relations between words constituting metadata is proposed. We mainly focus on acquiring synonymy, hyponymy, hypernymy and parataxis relations. In our schema, we extract texts related to metadata that will be expanded from text spatial through text extraction templates. Next, metadata will be obtained through metadata extraction templates. Finally, we compute semantic similarity to eliminate false relations and construct a semantic expansion knowledge base. The proposed method in this paper has been applied on the education grid. 展开更多
关键词 METADATA education grid resource search
下载PDF
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:1
11
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
下载PDF
Managing of Smart Micro-Grid Connected Scheme Using Group Search Optimization
12
作者 S. Bhagawath S. Edward Rajan 《Circuits and Systems》 2016年第10期3095-3111,共17页
This article introduces a group search optimization (GSO) based tuning model for modelling and managing Smart Micro-Grids connected system. In existing systems, typically tuned PID controllers are engaged to point out... This article introduces a group search optimization (GSO) based tuning model for modelling and managing Smart Micro-Grids connected system. In existing systems, typically tuned PID controllers are engaged to point out the load frequency control (LFC) problems through different tuning techniques. Though, inappropriately tuned PID controller may reveal pitiable dynamical reply and also incorrect option of integral gain may even undermine the complete system. This research is used to explain about an optimized energy management system through Group Search Optimization (GSO) for building incorporation in smart micro-grids (MGs) with zero grid-impact. The essential for this technique is to develop the MG effectiveness, when the complete PI controller requires to be tuned. Consequently, we proposed that the proposed GSO based algorithm with appropriate explanation or member representation, derivation of fitness function, producer process, scrounger process, and ranger process. An entire and adaptable design of MATLAB/SIMULINK also proposed. The related solutions and practical test verifications are given. This paper verified that the proposed method was effective in Micro-Grid (MG) applications. The comparison results demonstrate the advantage of the proposed technique and confirm its potential to solve the problem. 展开更多
关键词 MICRO-grid PI Controller Energy Management Group search Optimization Distributed Generation
下载PDF
基于GS-SVR的架空输电线路工程投资估算预测研究
13
作者 高妍方 戴小建 李利生 《山东建筑大学学报》 2024年第2期38-43,共6页
传统的投资估算编制模式存在过度依赖定额的现象,随着大量工程造价数据的积累,利用其实现投资估算,以弥补传统定额计价模式的不足,能够对建设项目工程造价起到总体控制作用。文章以架空输电线路工程为例,基于支持向量回归机(Support Vec... 传统的投资估算编制模式存在过度依赖定额的现象,随着大量工程造价数据的积累,利用其实现投资估算,以弥补传统定额计价模式的不足,能够对建设项目工程造价起到总体控制作用。文章以架空输电线路工程为例,基于支持向量回归机(Support Vector Regression,SVR)研究架空输电线路工程投资估算问题。结果表明:通过选取影响架空输电线路工程投资估算的主要指标,构建基于SVR的架空输电线路工程投资估算模型,并利用改进的网格搜索法(Grid Search,GS)优化模型参数,得到基于GS-SVR的投资估算预测模型;与传统的线性回归和SVR模型相比,GS-SVR模型表现出更为良好的性能。 展开更多
关键词 架空输电线路工程 支持向量回归机 网格搜索法 投资估算
下载PDF
基于聚类和GBDT的镀锌钢卷力学性能预测
14
作者 王伟 赵飞 +2 位作者 匡祯辉 白振华 刘勇 《重型机械》 2024年第2期54-58,共5页
热镀锌钢卷力学性能影响因素之间关系复杂,限制了模型精度的提升。采用k-means算法利用化学成分属性对镀锌钢卷数据集进行聚类,将数据聚成三种模式簇实现样本的优选。利用梯度提升树算法,开展各模式数据集与不划分模式的全数据集下的力... 热镀锌钢卷力学性能影响因素之间关系复杂,限制了模型精度的提升。采用k-means算法利用化学成分属性对镀锌钢卷数据集进行聚类,将数据聚成三种模式簇实现样本的优选。利用梯度提升树算法,开展各模式数据集与不划分模式的全数据集下的力学性能建模研究,最后结合网格搜索与交叉验证方法进行模型参数优化。研究结果表明,分模式下模型MAE误差相比于全数据集建模平均减小0.85 MPa。参数优化后,各模式下MAE误差平均减少5.19 MPa,RMSE误差平均减少3.63 MPa,提高了预测模型精度。 展开更多
关键词 热镀锌钢卷 K-MEANS 力学性能建模 梯度提升树 网格搜索法
下载PDF
基于机器学习算法的糖尿病预测
15
作者 凌雄娟 王俊杰 《现代信息科技》 2024年第14期59-63,68,共6页
糖尿病是一种无法根治的慢性疾病,早发现、早干预、早治疗能够延缓病情进展,提高患者的治疗效率。构建基于决策树、逻辑回归、XGBoost等六种机器学习分类算法的预测模型,实现糖尿病风险预测。该模型以皮马印第安人糖尿病数据集为研究对... 糖尿病是一种无法根治的慢性疾病,早发现、早干预、早治疗能够延缓病情进展,提高患者的治疗效率。构建基于决策树、逻辑回归、XGBoost等六种机器学习分类算法的预测模型,实现糖尿病风险预测。该模型以皮马印第安人糖尿病数据集为研究对象,通过数据预处理、数据特征分析构建有效数据集,采用网格搜索方法进行交叉验证寻找算法的最佳参数组合,构建超参数及基于超参数的分类模型,并对模型的预测性能进行评价。实验结果表明,该模型拥有良好的糖尿病风险预测性能。 展开更多
关键词 糖尿病预测 分类算法 网格搜索 模型评价
下载PDF
GSM-SVM在地震震级预测中的应用
16
作者 王晨晖 吕国军 +1 位作者 王秀敏 畅国平 《内陆地震》 2024年第1期63-69,共7页
针对地震震级影响因子众多且关系重复等问题,为合理预测地震震级,提出了基于网格搜索法优化支持向量机(support vector machine,SVM)的地震震级预测模型。选取地震累积频度、累积释放能量、b值、异常震群个数、地震条带个数、活动周期... 针对地震震级影响因子众多且关系重复等问题,为合理预测地震震级,提出了基于网格搜索法优化支持向量机(support vector machine,SVM)的地震震级预测模型。选取地震累积频度、累积释放能量、b值、异常震群个数、地震条带个数、活动周期和相关区震级等7个影响因子,利用主成分分析法(principal component analysis,PCA)去除因子间的冗余信息,降低输入维数,并利用网格搜索法(grid search method,GSM)确定SVM参数C和g,建立震级预测模型,并对测试样本进行预测,与遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm optimization,PSO)预测结果相对比,结果表明:PCA-GSM-SVM模型预测结果平均相对误差为1.29%,具有较高的预测精度。 展开更多
关键词 GSM-SVM 地震震级预测 主成分分析法 网格搜索法 支持向量机
下载PDF
Grid和P2P混合环境中一种基于信任的资源搜索机制 被引量:2
17
作者 周金洋 杨寿保 +1 位作者 郭磊涛 王莉苹 《计算机科学》 CSCD 北大核心 2005年第11期27-30,共4页
Grid和P2P两种分布式计算模式中的资源搜索算法均假设节点提供可靠的资源,但Grid和P2P混合计算环境的动态、异构、自组织等特点使得一些节点存在冒名和提供虚假服务等行为。本文对基于经验和最好邻居搜索机制进行改进,引入信任因子,提... Grid和P2P两种分布式计算模式中的资源搜索算法均假设节点提供可靠的资源,但Grid和P2P混合计算环境的动态、异构、自组织等特点使得一些节点存在冒名和提供虚假服务等行为。本文对基于经验和最好邻居搜索机制进行改进,引入信任因子,提出了基于信任的资源搜索机制。该机制有效抑制了欺骗行为,提高了资源搜索的可靠性和安全性。 展开更多
关键词 资源搜索 网格 对等网络 信任 信任值 搜索机制 grid 计算环境 P2P 混合
下载PDF
基于网格搜索和投票分类模型的喷油器故障诊断研究
18
作者 赵玉程 李英建 +2 位作者 沈世民 韩玉喜 宋杰 《机床与液压》 北大核心 2024年第5期213-220,共8页
为了提高高压共轨试验台对喷油器检修效率,提出一种基于网格搜索和投票分类模型的喷油器故障自动诊断方法。由于压电喷油器故障数据采集困难,使用AMESim软件模拟不同轨压和脉宽状态下压电喷油器可能出现的多种故障情况。随后,将采集到的... 为了提高高压共轨试验台对喷油器检修效率,提出一种基于网格搜索和投票分类模型的喷油器故障自动诊断方法。由于压电喷油器故障数据采集困难,使用AMESim软件模拟不同轨压和脉宽状态下压电喷油器可能出现的多种故障情况。随后,将采集到的1 760组数据使用由随机森林、支持向量机和GBM组成的投票分类模型进行训练,并使用网格搜索法优化各分类器的超参数。实验结果表明:该模型对压电喷油器的5种故障状态及正常状态诊断时的准确率、精确率、召回率和F1-score分别为98.86%、99.13%、98.56%、98.83%,表现出较高的准确性和稳定性。该方法能够快速高效地对喷油器故障情况进行定位。 展开更多
关键词 投票分类模型 网格搜索法 压电喷油器 故障诊断
下载PDF
基于卷积神经网络模块化搜索的高效电子鼻多气体分类算法
19
作者 祝煜荻 曾敏 +2 位作者 杨建华 胡南滔 杨志 《数字通信世界》 2024年第10期7-9,共3页
该文设计了一种基于格拉姆角和场的传感器信号转图方法,并提出了一种基于AlexNet的卷积神经网络模块化结构搜索方法(block-GS)。实验结果表明,block-GS方法能够搜索到性能优秀的网络结构,在两个气体数据集上的分类准确率分别达到92.11%... 该文设计了一种基于格拉姆角和场的传感器信号转图方法,并提出了一种基于AlexNet的卷积神经网络模块化结构搜索方法(block-GS)。实验结果表明,block-GS方法能够搜索到性能优秀的网络结构,在两个气体数据集上的分类准确率分别达到92.11%和93.33%,比普通网格搜索提高了近5%。此方法有望成为电子鼻模式识别算法设计的有效解决途径之一。 展开更多
关键词 电子鼻 格拉姆角和场 卷积神经网络 网格搜索 气体分类算法
下载PDF
自适应权重优化的树突状细胞算法
20
作者 田雨柔 杨鹤 《湖北第二师范学院学报》 2024年第8期43-51,共9页
树突状细胞算法是人工免疫系统中先天免疫层的经典算法,该算法通过融合危险和安全信号发现异常。但树突状细胞算法在信号权重的取值上常需要根据数据特征手动设置,削弱了算法的自适应性。针对这一问题,引入了网格搜索法,在给定的权重范... 树突状细胞算法是人工免疫系统中先天免疫层的经典算法,该算法通过融合危险和安全信号发现异常。但树突状细胞算法在信号权重的取值上常需要根据数据特征手动设置,削弱了算法的自适应性。针对这一问题,引入了网格搜索法,在给定的权重范围内根据识别效果自动调整权重取值,得到适应不同类型和规模数据集的信号权重组合。在多个公开数据集上的实验结果表明自适应权重优化的树突状细胞算法能根据数据集特征自适应训练得到较合理的权重矩阵,减少了人工经验对算法准确率的影响,改进后的算法识别准确率、真阳性率等均高于原树突状细胞算法,并优于同类算法。 展开更多
关键词 自适应权重 网格搜索 树突状细胞算法(DCA) 人工免疫系统
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部