为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点...为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点云数据量级;在快速点特征直方图(fast point features histogram,FPFH)中引入距离的二次函数,降低远距离邻域点的权值,提高近距离邻域点的权值。运用公开数据集Bunny点云数据进行实验的结果表明,该算法相对于传统点云配准算法的配准精度提升了54.65%,配准效率提升了39.39%。运用多组数据验证了该算法的有效性。展开更多
文摘为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点云数据量级;在快速点特征直方图(fast point features histogram,FPFH)中引入距离的二次函数,降低远距离邻域点的权值,提高近距离邻域点的权值。运用公开数据集Bunny点云数据进行实验的结果表明,该算法相对于传统点云配准算法的配准精度提升了54.65%,配准效率提升了39.39%。运用多组数据验证了该算法的有效性。