Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their perform...Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their performance is exploited with lossy compression techniques for images and videos generally using a mixed approach. To achieve our intended objective, which is to study the performance of lossless compression methods, we first carried out a literature review, a summary of which enabled us to select the most relevant, namely the following: arithmetic coding, LZW, Tunstall’s algorithm, RLE, BWT, Huffman coding and Shannon-Fano. Secondly, we designed a purposive text dataset with a repeating pattern in order to test the behavior and effectiveness of the selected compression techniques. Thirdly, we designed the compression algorithms and developed the programs (scripts) in Matlab in order to test their performance. Finally, following the tests conducted on relevant data that we constructed according to a deliberate model, the results show that these methods presented in order of performance are very satisfactory:- LZW- Arithmetic coding- Tunstall algorithm- BWT + RLELikewise, it appears that on the one hand, the performance of certain techniques relative to others is strongly linked to the sequencing and/or recurrence of symbols that make up the message, and on the other hand, to the cumulative time of encoding and decoding.展开更多
Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre...Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i...A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.展开更多
NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on t...NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal. Ring datastructure is adopted to save massive data effectively. It allows the efficient retrieval of allneighboring vertices and triangles of a given vertices. To avoid long and thin triangles, a newre-triangulation approach based on normalized minimum-vertex-distance is proposed, in which thevertex distance and interior angle of triangle are considered. Results indicate that the compressionmethod has high efficiency and can get reliable precision. The method can be applied in fastreverse engineering to acquire an optimal subset of the original massive data.展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. B...Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.展开更多
A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communica...A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.展开更多
The prediction of solar radiation is important for several applications in renewable energy research. There are a number of geographical variables which affect solar radiation prediction, the identification of these v...The prediction of solar radiation is important for several applications in renewable energy research. There are a number of geographical variables which affect solar radiation prediction, the identification of these variables for accurate solar radiation prediction is very important. This paper presents a hybrid method for the compression of solar radiation using predictive analysis. The prediction of minute wise solar radiation is performed by using different models of Artificial Neural Networks (ANN), namely Multi-layer perceptron neural network (MLPNN), Cascade feed forward back propagation (CFNN) and Elman back propagation (ELMNN). Root mean square error (RMSE) is used to evaluate the prediction accuracy of the three ANN models used. The information and knowledge gained from the present study could improve the accuracy of analysis concerning climate studies and help in congestion control.展开更多
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,...Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.展开更多
The method of data compression, using orthogonal transform, is introduced so as to insure the minimal distortion of signal restoration. It, featured with transformation, can compress the data according to the needed p...The method of data compression, using orthogonal transform, is introduced so as to insure the minimal distortion of signal restoration. It, featured with transformation, can compress the data according to the needed precision. The ratio of compressed data is closely related to precision. The results show it to be favorable to different kinds of data compression.展开更多
Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sens...Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.展开更多
This paper presents a simple but eifective algorithm to speed up the codebook search in a vector quantization scheme of SAR raw data when a minimum square error(MSE) criterion is used. A considerable reduction in the ...This paper presents a simple but eifective algorithm to speed up the codebook search in a vector quantization scheme of SAR raw data when a minimum square error(MSE) criterion is used. A considerable reduction in the number of operations is achieved.展开更多
Multistage Vector Quantization(MSVQ) can achieve very low encoding and storage complexity in comparison to unstructured vector quantization. However, the conventional MSVQ is suboptimal with respect to the overall per...Multistage Vector Quantization(MSVQ) can achieve very low encoding and storage complexity in comparison to unstructured vector quantization. However, the conventional MSVQ is suboptimal with respect to the overall performance measure. This paper proposes a new technology to design the decoder codebook, which is different from the encoder codebook to optimise the overall performance. The performance improvement is achieved with no effect on encoding complexity, both storage and time consuming, but a modest increase in storage complexity of decoder.展开更多
A sixteen tree method of data compression of bilevel image is described.Thismethod has high efficiency,no information loss during compression,and easy to realize.
Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which ...Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which has a fast convergence rate, a high precision, and a simple algorithm. A practical example has been used to verify its efficiency.展开更多
In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are construc...In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.展开更多
A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This al...A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This algorithm was tested by numerical simulation and data observed. Its results demonstrate that total errors in recovery data are less than 1% of original data in time domain,0.5% in frequency domain, when using these two methods together.Its compression ratio is greater than 3.The data compression softwares based on the algorithm have been used in the GDS-1000 portable broadband digital seismograph.展开更多
Water vapor monitoring system by Beidou satellite is a new detection system in meteorological department, which makes receiving amount of detected data and data storage and transmission pressure increase. Here, we try...Water vapor monitoring system by Beidou satellite is a new detection system in meteorological department, which makes receiving amount of detected data and data storage and transmission pressure increase. Here, we try to use data compression to relieve pressure. Compres- sion software of water vapor monitoring system by Beidou satellite can be designed into three components: real-time compression software, check compression software and manual compression software, which respectively completes the compression tasks under real-time receiving, in-time check and separate compression, thereby forming a perfect compression system. Taking the design of manual compression software as guide,and using c language to develop,compression test of original receiving data is conducted. Test result proves that the system can carry out batch auto- matic compression, and compression rate can reach 30% ,which can reach the target of saving space in a degree.展开更多
HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acq...HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acquire, store, analyze and index the data. The volume of the data is nearly up to hundreds of million bytes. Besides the hardware and software support, a great capacity of data storage, process and transfer is a more important problem. To deal with this problem, the key technology is data compression algorithm. In the paper, the data format in HT-7 is introduced first, then the data compression algorithm, LZO, being a kind of portable lossless data compression algorithm with ANSI C, is analyzed. This compression algorithm, which fits well with the data acquisition and distribution in the nuclear fusion experiment, offers a pretty fast compression and extremely fast decompression. At last the performance evaluation of LZO application in HT-7 is given.展开更多
文摘Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their performance is exploited with lossy compression techniques for images and videos generally using a mixed approach. To achieve our intended objective, which is to study the performance of lossless compression methods, we first carried out a literature review, a summary of which enabled us to select the most relevant, namely the following: arithmetic coding, LZW, Tunstall’s algorithm, RLE, BWT, Huffman coding and Shannon-Fano. Secondly, we designed a purposive text dataset with a repeating pattern in order to test the behavior and effectiveness of the selected compression techniques. Thirdly, we designed the compression algorithms and developed the programs (scripts) in Matlab in order to test their performance. Finally, following the tests conducted on relevant data that we constructed according to a deliberate model, the results show that these methods presented in order of performance are very satisfactory:- LZW- Arithmetic coding- Tunstall algorithm- BWT + RLELikewise, it appears that on the one hand, the performance of certain techniques relative to others is strongly linked to the sequencing and/or recurrence of symbols that make up the message, and on the other hand, to the cumulative time of encoding and decoding.
基金Supported by the National Natural Science Foundation of China(61076019,61106018)the Aeronautical Science Foundation of China(20115552031)+3 种基金the China Postdoctoral Science Foundation(20100481134)the Jiangsu Province Key Technology R&D Program(BE2010003)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010115)the Nanjing University of Aeronatics and Astronautics Initial Funding for Talented Faculty(1004-YAH10027)~~
文摘Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
基金This project was supported by the National Natural Science Foundation of China (60532060)Hainan Education Bureau Research Project (Hjkj200602)Hainan Natural Science Foundation (80551).
文摘A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.
基金This project is supported by Provincial Key Project of Science and Technology of Zhejiang(No.2003C21031).
文摘NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal. Ring datastructure is adopted to save massive data effectively. It allows the efficient retrieval of allneighboring vertices and triangles of a given vertices. To avoid long and thin triangles, a newre-triangulation approach based on normalized minimum-vertex-distance is proposed, in which thevertex distance and interior angle of triangle are considered. Results indicate that the compressionmethod has high efficiency and can get reliable precision. The method can be applied in fastreverse engineering to acquire an optimal subset of the original massive data.
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
基金The authors would like to acknowledge the support from Project“973”of the State Key Fundamental Research under grant G1998030415.
文摘Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.
文摘A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.
文摘The prediction of solar radiation is important for several applications in renewable energy research. There are a number of geographical variables which affect solar radiation prediction, the identification of these variables for accurate solar radiation prediction is very important. This paper presents a hybrid method for the compression of solar radiation using predictive analysis. The prediction of minute wise solar radiation is performed by using different models of Artificial Neural Networks (ANN), namely Multi-layer perceptron neural network (MLPNN), Cascade feed forward back propagation (CFNN) and Elman back propagation (ELMNN). Root mean square error (RMSE) is used to evaluate the prediction accuracy of the three ANN models used. The information and knowledge gained from the present study could improve the accuracy of analysis concerning climate studies and help in congestion control.
基金supported by the NSC under Grant No.NSC-101-2221-E-239-032 and NSC-102-2221-E-239-020
文摘Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.
文摘The method of data compression, using orthogonal transform, is introduced so as to insure the minimal distortion of signal restoration. It, featured with transformation, can compress the data according to the needed precision. The ratio of compressed data is closely related to precision. The results show it to be favorable to different kinds of data compression.
文摘Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.
文摘This paper presents a simple but eifective algorithm to speed up the codebook search in a vector quantization scheme of SAR raw data when a minimum square error(MSE) criterion is used. A considerable reduction in the number of operations is achieved.
文摘Multistage Vector Quantization(MSVQ) can achieve very low encoding and storage complexity in comparison to unstructured vector quantization. However, the conventional MSVQ is suboptimal with respect to the overall performance measure. This paper proposes a new technology to design the decoder codebook, which is different from the encoder codebook to optimise the overall performance. The performance improvement is achieved with no effect on encoding complexity, both storage and time consuming, but a modest increase in storage complexity of decoder.
文摘A sixteen tree method of data compression of bilevel image is described.Thismethod has high efficiency,no information loss during compression,and easy to realize.
文摘Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which has a fast convergence rate, a high precision, and a simple algorithm. A practical example has been used to verify its efficiency.
文摘In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.
文摘A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This algorithm was tested by numerical simulation and data observed. Its results demonstrate that total errors in recovery data are less than 1% of original data in time domain,0.5% in frequency domain, when using these two methods together.Its compression ratio is greater than 3.The data compression softwares based on the algorithm have been used in the GDS-1000 portable broadband digital seismograph.
文摘Water vapor monitoring system by Beidou satellite is a new detection system in meteorological department, which makes receiving amount of detected data and data storage and transmission pressure increase. Here, we try to use data compression to relieve pressure. Compres- sion software of water vapor monitoring system by Beidou satellite can be designed into three components: real-time compression software, check compression software and manual compression software, which respectively completes the compression tasks under real-time receiving, in-time check and separate compression, thereby forming a perfect compression system. Taking the design of manual compression software as guide,and using c language to develop,compression test of original receiving data is conducted. Test result proves that the system can carry out batch auto- matic compression, and compression rate can reach 30% ,which can reach the target of saving space in a degree.
基金The project supported by the Meg-Science Enineering Project of Chinese Acdemy of Sciences
文摘HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acquire, store, analyze and index the data. The volume of the data is nearly up to hundreds of million bytes. Besides the hardware and software support, a great capacity of data storage, process and transfer is a more important problem. To deal with this problem, the key technology is data compression algorithm. In the paper, the data format in HT-7 is introduced first, then the data compression algorithm, LZO, being a kind of portable lossless data compression algorithm with ANSI C, is analyzed. This compression algorithm, which fits well with the data acquisition and distribution in the nuclear fusion experiment, offers a pretty fast compression and extremely fast decompression. At last the performance evaluation of LZO application in HT-7 is given.