In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba...In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.展开更多
This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elim...This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elimination function,while outputting a PV direct current(DC)power supply.This method effectively reduces the residual grounding current.To reduce the dependence of the arc-suppression performance on accurate compensation current-injection models,an adaptive fuzzy neural network imitating a sliding mode controller was designed.An online adaptive adjustment law for network parameters was developed,based on the Lyapunov stability theorem,to improve the robustness of the inverter to fault and connection locations.Furthermore,a new arc-suppression control exit strategy is proposed to allow a zerosequence voltage amplitude to quickly and smoothly track a target value by controlling the nonlinear decrease in current and reducing the regulation time.Simulation results showed that the proposed method can effectively achieve fast arc suppression and reduce the fault impact current in single-phase grounding faults.Compared to other methods,the proposed method can generate a lower residual grounding current and maintain good arc-suppression performance under different transition resistances and fault locations.展开更多
The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backsteppin...The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.展开更多
Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature consideri...Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature considering DGS with only one inverter connected to the utility. With the big scale application of photovoltaic (PV) power systems, islanding detection technology of multi-inverter DGS has been paid more attention. This paper analyzes the performance of diverse islanding detection methods in multiple inverters grid-connected PV systems. Non-Detection Zones (NDZ) of multi-inverter systems in a load parameter space are used as analytical tool. The paper provides guidance for the islanding detection design in multiple grid-connected inverters.展开更多
In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topolog...In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topology has allowed the voltage stresses of the converter to be distributed among several switching cells. Secondly, divide the input voltage into several fractions to reduce the number of power semiconductors to be switched. In this contribution, the general topology of this micro-inverter has been described and the simulation tests developed to validate its operation have been presented. Finally, we discussed the simulation results, the efficiency of this topology and the feasibility of its use in a grid-connected photovoltaic production system.展开更多
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta...Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.展开更多
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration....In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.The deep defects between the metal oxide-based electron transport layer and bulk-heterojunction photoactive layer interface were responsible for suboptimal PCE and facilitated degradation of devices.While the density of deep traps is increased during the storage of i-OPV,the penetrative oxygen-containing defects additionally generated shallow traps below the band-edge of Y6,causing an additional loss in the open-circuit voltage.The suppression of interfacial defects by chemical modification effectively improved the PCE and long-term stability of i-OPV.The modified i-OPV(mi-OPV)achieved a PCE of 17.42%,which is the highest value among the reported PM6:Y6-based i-OPV devices.Moreover,long-term stability was significantly improved:~90%and~80%retention of its initial PCE after 1200 h of air storage and illumination,respectively.展开更多
The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control str...The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.展开更多
An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS)...An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.展开更多
This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optima...This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.展开更多
In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. T...In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.展开更多
Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-ti...Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-tied photovoltaic(PV)inverters.Large installations and ambitious plans have been recently achieved for PV systems as clean and renewable power generation sources due to their improved environmental impacts and availability everywhere.Power converters represent the main parts for the grid integration of PV systems.However,PV power converters contain several power switches that construct their circuits.The power switches in PV systems are highly subjected to high stresses due to the continuously varying operating conditions.Moreover,the grid-tied systems represent nonlinear systems and the system model parameters are changing continuously.Consequently,the grid-tied PV systems have a nonlinear factor and the fault detection and identification(FDI)methods based on using mathematical models become more complex.The proposed fuzzy logic-based FDI(FL-FDI)method is based on employing the fuzzy logic concept for detecting and identifying the location of various switch faults.The proposed FL-FDI method is designed and extracted from the analysis and comparison of the various measured voltage/current components for the control purposes.Therefore,the proposed FL-FDI method does not require additional components or measurement circuits.Additionally,the proposed method can detect the faulty condition and also identify the location of the faulty switch for replacement and maintenance purposes.The proposed method can detect the faulty condition within only a single fundamental line period without the need for additional sensors and/or performing complex calculations or precise models.The proposed FL-FDI method is tested on the widely used T-type PV inverter system,wherein there are twelve different switches and the FDI process represents a challenging task.The results shows the superior and accurate performance of the proposed FL-FDI method.展开更多
Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper p...Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper presents a combined active islanding detection method, which consists of active frequency drift method and automatic phase-shift method. The traditional active anti-islanding methods of grid-connected PV inverters bear nondetection zone possibilities for certain paralleled RLC loads. The combined method shows islanding detection ability effectively, and it can eliminate nondetection zones even in the worst case conditions. Simulation in different load conditions is performed for verification.展开更多
In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-conn...In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.展开更多
For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditi...A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.展开更多
The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the powe...The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.展开更多
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elimination function,while outputting a PV direct current(DC)power supply.This method effectively reduces the residual grounding current.To reduce the dependence of the arc-suppression performance on accurate compensation current-injection models,an adaptive fuzzy neural network imitating a sliding mode controller was designed.An online adaptive adjustment law for network parameters was developed,based on the Lyapunov stability theorem,to improve the robustness of the inverter to fault and connection locations.Furthermore,a new arc-suppression control exit strategy is proposed to allow a zerosequence voltage amplitude to quickly and smoothly track a target value by controlling the nonlinear decrease in current and reducing the regulation time.Simulation results showed that the proposed method can effectively achieve fast arc suppression and reduce the fault impact current in single-phase grounding faults.Compared to other methods,the proposed method can generate a lower residual grounding current and maintain good arc-suppression performance under different transition resistances and fault locations.
基金supported by the State Grid Corporation of China Headquarters Science and Technology Project under Grant No.5400-202122573A-0-5-SF。
文摘The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.
文摘Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature considering DGS with only one inverter connected to the utility. With the big scale application of photovoltaic (PV) power systems, islanding detection technology of multi-inverter DGS has been paid more attention. This paper analyzes the performance of diverse islanding detection methods in multiple inverters grid-connected PV systems. Non-Detection Zones (NDZ) of multi-inverter systems in a load parameter space are used as analytical tool. The paper provides guidance for the islanding detection design in multiple grid-connected inverters.
文摘In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topology has allowed the voltage stresses of the converter to be distributed among several switching cells. Secondly, divide the input voltage into several fractions to reduce the number of power semiconductors to be switched. In this contribution, the general topology of this micro-inverter has been described and the simulation tests developed to validate its operation have been presented. Finally, we discussed the simulation results, the efficiency of this topology and the feasibility of its use in a grid-connected photovoltaic production system.
基金financially supported by the Sichuan Science and Technology Program(Grant Nos.2023YFH0087,2023YFH0085,2023YFH0086,and 2023NSFSC0990)State Key Laboratory of Polymer Materials Engineering(Grant Nos.sklpme2022-3-02 and sklpme2023-2-11)+1 种基金Tibet Foreign Experts Program(Grant No.2022wz002)supported by the King Abdullah University of Science and Technology(KAUST)Office of Research Administration(ORA)under Award Nos.OSR-CARF/CCF-3079 and OSR-2021-CRG10-4701.
文摘Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
基金supported by a National Research Foundation of Korea(grant#:2020R1A2C1003929,2019R1A6A1A11053838,2020M1A2A2080746,2021M2E8A1044198,2016R1A5A1012966,2021M3H4A1A03051379).
文摘In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.The deep defects between the metal oxide-based electron transport layer and bulk-heterojunction photoactive layer interface were responsible for suboptimal PCE and facilitated degradation of devices.While the density of deep traps is increased during the storage of i-OPV,the penetrative oxygen-containing defects additionally generated shallow traps below the band-edge of Y6,causing an additional loss in the open-circuit voltage.The suppression of interfacial defects by chemical modification effectively improved the PCE and long-term stability of i-OPV.The modified i-OPV(mi-OPV)achieved a PCE of 17.42%,which is the highest value among the reported PM6:Y6-based i-OPV devices.Moreover,long-term stability was significantly improved:~90%and~80%retention of its initial PCE after 1200 h of air storage and illumination,respectively.
基金National Natural Science Foundation of China(No.51767014)China Railway Corporation of Science and Technology Research and Development Projects(No.2016J010-C)
文摘The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.
基金Supported by National Basic Research Program of China ("973" Program,No. 2009CB219701 and No. 2010CB234608)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for Doctor Discipline of Ministry of Education of China (No. 20090032110064)
文摘An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.
文摘This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.
基金supported by Delta Power Electronic Science and Education Development in 2007 (Grant No.DRES2007002)
文摘In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.
基金supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No.2020/01/11742.
文摘Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-tied photovoltaic(PV)inverters.Large installations and ambitious plans have been recently achieved for PV systems as clean and renewable power generation sources due to their improved environmental impacts and availability everywhere.Power converters represent the main parts for the grid integration of PV systems.However,PV power converters contain several power switches that construct their circuits.The power switches in PV systems are highly subjected to high stresses due to the continuously varying operating conditions.Moreover,the grid-tied systems represent nonlinear systems and the system model parameters are changing continuously.Consequently,the grid-tied PV systems have a nonlinear factor and the fault detection and identification(FDI)methods based on using mathematical models become more complex.The proposed fuzzy logic-based FDI(FL-FDI)method is based on employing the fuzzy logic concept for detecting and identifying the location of various switch faults.The proposed FL-FDI method is designed and extracted from the analysis and comparison of the various measured voltage/current components for the control purposes.Therefore,the proposed FL-FDI method does not require additional components or measurement circuits.Additionally,the proposed method can detect the faulty condition and also identify the location of the faulty switch for replacement and maintenance purposes.The proposed method can detect the faulty condition within only a single fundamental line period without the need for additional sensors and/or performing complex calculations or precise models.The proposed FL-FDI method is tested on the widely used T-type PV inverter system,wherein there are twelve different switches and the FDI process represents a challenging task.The results shows the superior and accurate performance of the proposed FL-FDI method.
文摘Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper presents a combined active islanding detection method, which consists of active frequency drift method and automatic phase-shift method. The traditional active anti-islanding methods of grid-connected PV inverters bear nondetection zone possibilities for certain paralleled RLC loads. The combined method shows islanding detection ability effectively, and it can eliminate nondetection zones even in the worst case conditions. Simulation in different load conditions is performed for verification.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Science and Technology Project of State Grid Corporation of China(Grant No.52272219000 V).
文摘In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.
基金the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University under Grant No.2018-103the Colleges and University Scientific Research Funds of Gansu Province under Grant No.2017A-026。
文摘The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.