Dissolved oxygen in the steel at the terminal of the converter smelting process is the main cause for the formation of oxide inclusions, and the high terminal oxygen content worsens the steel cleanness. However, post ...Dissolved oxygen in the steel at the terminal of the converter smelting process is the main cause for the formation of oxide inclusions, and the high terminal oxygen content worsens the steel cleanness. However, post stirring in a combined blowing converter can promote the carbon-oxygen reaction in the liquid steel and reduce the dissolved oxygen content at the terminal of the converter smelting process. Thus, the mathematical model of deoxidization in the post stirring process was obtained, and the rationality of which was further verified by industrial tests. Finally, it is concluded that the product of dissolved carbon and oxygen, i.e. w[C]·w[O], decreases obviously after adopting the new technique of post stirring in the combined blowing converter.展开更多
Procedures of mathematical modeling of thin solid-state converters of neutrons are described and converters a foil from natural gadolinium and its 157 isotopes are viewed. Algorithms of calculation of absorption of ne...Procedures of mathematical modeling of thin solid-state converters of neutrons are described and converters a foil from natural gadolinium and its 157 isotopes are viewed. Algorithms of calculation of absorption of neutrons in a material of converters, probabilities formation of secondary electrons, probability of an exit of electrons from a material of the converter and efficiency of converters are given. Calculation is made for various thicknesses of converters, and various wavelengths of neutrons. The optimal converter thicknesses are chosen.展开更多
Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940’s. The traditional mathematical modelling is not available for complex structure converter...Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940’s. The traditional mathematical modelling is not available for complex structure converters since the differential equation order increases very high. We have to search other way to establish mathematical modelling for power DC/DC converters.We have theoretically defined a new concept-Energy Factor (EF) in this paper and researched the relations between EF and the mathematical modelling for power DC/DC converters. EF is a new concept in power DC/DC conversion technology, which thoroughly differs from the traditional concepts such as power factor (PF), power transfer efficiency (η), total harmonic distortion (THD) and ripple factor (RF). EF and the subsequential EFV (and EFVD) can illustrate the system stability, reference response and interference recovery. This investigation is very helpful for system design and DC/DC converters characteristics foreseeing. Two DC/DC converters: Buck converter and Super-Lift Luo-Converter as the samples are analysed in this paper to demonstrate the applications of EF, EFV (and EFVD), PE, SE, VE (and VED), time constant τ and damping time constant τd.展开更多
Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circui...Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circuit response;moreover it is convenient for controller design purpose. Due to simple and effective methodology, average state space is the most common method among the modelling methods. In this paper a bidirectional full bridge converter is modelled by average state space and for each mode of operations a controller is designed. Attained mathematical model results are in a close agreement with detailed circuit simulation.展开更多
Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link a...Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link and magnetic integration feature has been proposed,which can reduce the system volume and thus increase the power density.However,the magnetic integration also introduces strong coupling between the line frequency(LF)and MF variables,which poses a great challenge on modeling and control issues.This paper proposes a modeling and control method for an SST with magnetic integration and mixed-frequency modulation.A mathematical model based on dual d-q references is deduced,and then a cascaded control system is designed according to the model.Parameters of the controller for the variables at one frequency are properly designed to avoid disturbance from the variables at the other frequency.The simulation and experimental results show good decoupling effect and satisfactory dynamics performance of the proposed control system.展开更多
One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temper...One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temperature and pressure along the height in the two converters, respectively. Design optimization methods of the two converters have been proposed, by which the minimum catalyst volume can be obtained to satisfy the productive capacity of 1000 tons per day, when the operating pressure is 15.0, 10.0 and 7.5 MPa, respectively.展开更多
模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进...模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进展,首先介绍了MMC的拓扑电路及其工作原理,分析了其技术特点和应用领域,比较了其相对于传统2电平和3电平VSC拓扑的优势所在。然后分别从MMC的数学模型、调制策略、子模块电容均压、预充电、内部环流、控制方面、换流阀试验以及其在VSC-HVDC系统中的工程应用等方面,回顾了MMC目前在国内外的最新研究进展和工程应用现状,并指出了MMC自身的缺点和今后亟待研究的关键问题。已有的研究表明,MMC在电力系统中有着广阔的应用前景,是未来高压直流输电技术的一个重要发展方向。展开更多
文摘Dissolved oxygen in the steel at the terminal of the converter smelting process is the main cause for the formation of oxide inclusions, and the high terminal oxygen content worsens the steel cleanness. However, post stirring in a combined blowing converter can promote the carbon-oxygen reaction in the liquid steel and reduce the dissolved oxygen content at the terminal of the converter smelting process. Thus, the mathematical model of deoxidization in the post stirring process was obtained, and the rationality of which was further verified by industrial tests. Finally, it is concluded that the product of dissolved carbon and oxygen, i.e. w[C]·w[O], decreases obviously after adopting the new technique of post stirring in the combined blowing converter.
文摘Procedures of mathematical modeling of thin solid-state converters of neutrons are described and converters a foil from natural gadolinium and its 157 isotopes are viewed. Algorithms of calculation of absorption of neutrons in a material of converters, probabilities formation of secondary electrons, probability of an exit of electrons from a material of the converter and efficiency of converters are given. Calculation is made for various thicknesses of converters, and various wavelengths of neutrons. The optimal converter thicknesses are chosen.
文摘Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940’s. The traditional mathematical modelling is not available for complex structure converters since the differential equation order increases very high. We have to search other way to establish mathematical modelling for power DC/DC converters.We have theoretically defined a new concept-Energy Factor (EF) in this paper and researched the relations between EF and the mathematical modelling for power DC/DC converters. EF is a new concept in power DC/DC conversion technology, which thoroughly differs from the traditional concepts such as power factor (PF), power transfer efficiency (η), total harmonic distortion (THD) and ripple factor (RF). EF and the subsequential EFV (and EFVD) can illustrate the system stability, reference response and interference recovery. This investigation is very helpful for system design and DC/DC converters characteristics foreseeing. Two DC/DC converters: Buck converter and Super-Lift Luo-Converter as the samples are analysed in this paper to demonstrate the applications of EF, EFV (and EFVD), PE, SE, VE (and VED), time constant τ and damping time constant τd.
文摘Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circuit response;moreover it is convenient for controller design purpose. Due to simple and effective methodology, average state space is the most common method among the modelling methods. In this paper a bidirectional full bridge converter is modelled by average state space and for each mode of operations a controller is designed. Attained mathematical model results are in a close agreement with detailed circuit simulation.
基金the National Natural Science Foundation of China under Grant 51777085.
文摘Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link and magnetic integration feature has been proposed,which can reduce the system volume and thus increase the power density.However,the magnetic integration also introduces strong coupling between the line frequency(LF)and MF variables,which poses a great challenge on modeling and control issues.This paper proposes a modeling and control method for an SST with magnetic integration and mixed-frequency modulation.A mathematical model based on dual d-q references is deduced,and then a cascaded control system is designed according to the model.Parameters of the controller for the variables at one frequency are properly designed to avoid disturbance from the variables at the other frequency.The simulation and experimental results show good decoupling effect and satisfactory dynamics performance of the proposed control system.
文摘One-dimensional pseudo-homogeneous model of an axial flow converter and one-dimensional heteroge-neous model of a horizontal converter have been presented, which describe the distribution of gaseous composition,temperature and pressure along the height in the two converters, respectively. Design optimization methods of the two converters have been proposed, by which the minimum catalyst volume can be obtained to satisfy the productive capacity of 1000 tons per day, when the operating pressure is 15.0, 10.0 and 7.5 MPa, respectively.
文摘模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进展,首先介绍了MMC的拓扑电路及其工作原理,分析了其技术特点和应用领域,比较了其相对于传统2电平和3电平VSC拓扑的优势所在。然后分别从MMC的数学模型、调制策略、子模块电容均压、预充电、内部环流、控制方面、换流阀试验以及其在VSC-HVDC系统中的工程应用等方面,回顾了MMC目前在国内外的最新研究进展和工程应用现状,并指出了MMC自身的缺点和今后亟待研究的关键问题。已有的研究表明,MMC在电力系统中有着广阔的应用前景,是未来高压直流输电技术的一个重要发展方向。