In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current...In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.展开更多
Based on the review of present force coefficients estimation methods, a new method in the frequency domain, revised cross-spectrum estimation method, is presented in this paper. Some experiments on the wave-current fo...Based on the review of present force coefficients estimation methods, a new method in the frequency domain, revised cross-spectrum estimation method, is presented in this paper. Some experiments on the wave-current force on inclined cylinders are also described and the wave current force coefficients are estimated by the revised cross-spectrum estimation method. From the results, it is found that the wave and current directions have some regular effect on the coefficients. According to the results, some empirical formulas are obtained for converting the wave-current force coefficients on inclined cylinders into a unified coefficient. Comparisons show that the unified coefficients are in good agreement with other results.展开更多
Considering that the measurement devices of the distribution network are becoming more and more abundant, on the basis of the traditional Supervisory Control And Data Acquisition (SCADA) measurement system, Phasor mea...Considering that the measurement devices of the distribution network are becoming more and more abundant, on the basis of the traditional Supervisory Control And Data Acquisition (SCADA) measurement system, Phasor measurement unit (PMU) devices are also gradually applied to the distribution network. So when estimating the state of the distribution network, the above two devices need to be used. However, because the data of different measurement systems are different, it is necessary to balance this difference so that the data of different systems can be compatible to achieve the purpose of effective utilization of the estimated power distribution state. To this end, this paper starts with three aspects of data accuracy of the two measurement systems, data time section and data refresh frequency to eliminate the differences between system data, and then considers the actual situation of the three-phase asymmetry of the distribution network. The three-phase state estimation equations are constructed by the branch current method, and finally the state estimation results are solved by the weighted least square method.展开更多
For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the tra...For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.展开更多
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is stu...An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.展开更多
Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic nois...Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.展开更多
Leakage current of CMOS circuit increases dramatically with the technologyscaling down and has become a critical issue of high performance system. Subthreshold, gate andreverse biased junction band-to-band tunneling (...Leakage current of CMOS circuit increases dramatically with the technologyscaling down and has become a critical issue of high performance system. Subthreshold, gate andreverse biased junction band-to-band tunneling (BTBT) leakages are considered three maindeterminants of total leakage current. Up to now, how to accurately estimate leakage current oflarge-scale circuits within endurable time remains unsolved, even though accurate leakage modelshave been widely discussed. In this paper, the authors first dip into the stack effect of CMOStechnology and propose a new simple gate-level leakage current model. Then, a table-lookup basedtotal leakage current simulator is built up according to the model. To validate the simulator,accurate leakage current is simulated at circuit level using popular simulator HSPICE forcomparison. Some further studies such as maximum leakage current estimation, minimum leakage currentgeneration and a high-level average leakage current macromodel are introduced in detail.Experiments on ISCAS85 and ISCAS89 benchmarks demonstrate that the two proposed leakage currentestimation methods are very accurate and efficient.展开更多
Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be cause...Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be caused by the DC faults. To deal with the possible asymmetry in the DC faults and the coupling effects of the DC lines, this paper analyzes the DC fault characteristics based on the phase-mode transformation. First, the DC grid is decomposed into the common-mode and the differential-mode networks. The equivalent models of the MMCs and DC lines in the two networks are derived, respectively. Then, based on the state matrices, a unified numerical calculation method for the fault voltages and currents at the DC side is proposed. Compared with the time-domain simulations performed on PSCAD/EMTDC, the accuracy of the proposed method is validated. Last, the system parameter analysis shows that the grounding parameters play an important role in reducing the severity of the pole-to-ground faults, whereas the coupling effects of the DC lines should be considered when calculating the DC fault currents associated with the pole-to-pole faults.展开更多
This paper discusses efficient estimation for the additive hazards regression model when only bivariate current status data are available. Current status data occur in many fields including demographical studies and t...This paper discusses efficient estimation for the additive hazards regression model when only bivariate current status data are available. Current status data occur in many fields including demographical studies and tumorigenicity experiments (Keiding, 1991; Sun, 2006) and several approaches have been proposed for the additive hazards model with univariate current status data (Linet M., 1998; Martinussen and Scheike, 2002). For bivariate data, in addition to facing the same problems as those with univariate data, one needs to deal with the association or correlation between two related failure time variables of interest. For this, we employ the copula model and an efficient estimation procedure is developed for inference. Simulation studies are performed to evaluate the proposed estimates and suggest that the approach works well in practical situations. An illustrative example is provided.展开更多
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
基金funded by the Basic Research on National Defense of China(No.JCKY2021603B033),which is gratefully acknowledged。
文摘In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.
文摘Based on the review of present force coefficients estimation methods, a new method in the frequency domain, revised cross-spectrum estimation method, is presented in this paper. Some experiments on the wave-current force on inclined cylinders are also described and the wave current force coefficients are estimated by the revised cross-spectrum estimation method. From the results, it is found that the wave and current directions have some regular effect on the coefficients. According to the results, some empirical formulas are obtained for converting the wave-current force coefficients on inclined cylinders into a unified coefficient. Comparisons show that the unified coefficients are in good agreement with other results.
文摘Considering that the measurement devices of the distribution network are becoming more and more abundant, on the basis of the traditional Supervisory Control And Data Acquisition (SCADA) measurement system, Phasor measurement unit (PMU) devices are also gradually applied to the distribution network. So when estimating the state of the distribution network, the above two devices need to be used. However, because the data of different measurement systems are different, it is necessary to balance this difference so that the data of different systems can be compatible to achieve the purpose of effective utilization of the estimated power distribution state. To this end, this paper starts with three aspects of data accuracy of the two measurement systems, data time section and data refresh frequency to eliminate the differences between system data, and then considers the actual situation of the three-phase asymmetry of the distribution network. The three-phase state estimation equations are constructed by the branch current method, and finally the state estimation results are solved by the weighted least square method.
基金supported by the National Natural Science Foundation of China under Grant 61733015,62473322High-Speed Railway Joint Funds of National Natural Science Foundation of China under Grant U1934204.
文摘For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
文摘An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.
基金the Ministry of Science and Higher Education of the Russian Federation under Grant No.FSUN-2023-0007.
文摘Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.
文摘Leakage current of CMOS circuit increases dramatically with the technologyscaling down and has become a critical issue of high performance system. Subthreshold, gate andreverse biased junction band-to-band tunneling (BTBT) leakages are considered three maindeterminants of total leakage current. Up to now, how to accurately estimate leakage current oflarge-scale circuits within endurable time remains unsolved, even though accurate leakage modelshave been widely discussed. In this paper, the authors first dip into the stack effect of CMOStechnology and propose a new simple gate-level leakage current model. Then, a table-lookup basedtotal leakage current simulator is built up according to the model. To validate the simulator,accurate leakage current is simulated at circuit level using popular simulator HSPICE forcomparison. Some further studies such as maximum leakage current estimation, minimum leakage currentgeneration and a high-level average leakage current macromodel are introduced in detail.Experiments on ISCAS85 and ISCAS89 benchmarks demonstrate that the two proposed leakage currentestimation methods are very accurate and efficient.
文摘Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be caused by the DC faults. To deal with the possible asymmetry in the DC faults and the coupling effects of the DC lines, this paper analyzes the DC fault characteristics based on the phase-mode transformation. First, the DC grid is decomposed into the common-mode and the differential-mode networks. The equivalent models of the MMCs and DC lines in the two networks are derived, respectively. Then, based on the state matrices, a unified numerical calculation method for the fault voltages and currents at the DC side is proposed. Compared with the time-domain simulations performed on PSCAD/EMTDC, the accuracy of the proposed method is validated. Last, the system parameter analysis shows that the grounding parameters play an important role in reducing the severity of the pole-to-ground faults, whereas the coupling effects of the DC lines should be considered when calculating the DC fault currents associated with the pole-to-pole faults.
基金partly supported by National Natural Science Foundation of China (Grant No. 10971015, 11131002)Key Project of Chinese Ministry of Education (Grant No. 309007)the Fundamental Research Funds for the Central Universities
文摘This paper discusses efficient estimation for the additive hazards regression model when only bivariate current status data are available. Current status data occur in many fields including demographical studies and tumorigenicity experiments (Keiding, 1991; Sun, 2006) and several approaches have been proposed for the additive hazards model with univariate current status data (Linet M., 1998; Martinussen and Scheike, 2002). For bivariate data, in addition to facing the same problems as those with univariate data, one needs to deal with the association or correlation between two related failure time variables of interest. For this, we employ the copula model and an efficient estimation procedure is developed for inference. Simulation studies are performed to evaluate the proposed estimates and suggest that the approach works well in practical situations. An illustrative example is provided.