X-ray fluorescence (XRF) analysis utilizes particle size which is resulted from milling of a material. The milling ensures uniform and fine grained powder. The finer and more uniform the particle size is, the better t...X-ray fluorescence (XRF) analysis utilizes particle size which is resulted from milling of a material. The milling ensures uniform and fine grained powder. The finer and more uniform the particle size is, the better the result and easier it is for material quality control. To ensure uniformity in particle size and finer powder, a comparative analysis was conducted with different grinding aids and pressed pellet method was used in obtaining analysis results. Pressed pellets of cement raw meal sample milled with different grinding aids (graphite, aspirin and lithium borate) were subjected to XRF. Graphite produced better particle size uniformity with a corresponding standard deviation that made quality control of raw meal easier and better than aspirin and lithium borate.展开更多
Effects of modified triethanolamine as cement grinding aids on particles characteristics and mechanical property of cement were studied, and its reaction mechanism was analyzed by IR, Zeta potential, SEM, XRD and TG-D...Effects of modified triethanolamine as cement grinding aids on particles characteristics and mechanical property of cement were studied, and its reaction mechanism was analyzed by IR, Zeta potential, SEM, XRD and TG-DTA. The results show that the content of 3-32 μm particles for cement with 0.015% modified triethanolamine(M-TEA) is increased by 12.4%, and the compressive strengths of cement with 0.03% M-TEA are increased by 5.5 and 8.2 MPa at 3 and 28 days, respectively. And both the grinding and enhancement effects of M-TEA on cement are better than triethanolamine. The mechanism analysis shows that M-TEA not only has the amino and hydroxyl groups of TEA, but also has the ester, carbonyl, carboxyl groups which easily combine with metal ions of cement minerals, resulting in that M-TEA can promote surface adsorption and shield the unsaturated charges in the surface and crack section of particles, thus particles reunion is prevented and grinding efficiency is improved. Enhancement of M-TEA on cement mainly lies in that it can promote or induce hydration reaction of cement mineral with gypsum and water, which accelerates formation of hydration products, and then improves the structure and morphology of cement hydration products, thus the uniformity and compactness of product structure is increased.展开更多
Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca ele...Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence(XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20-100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed.展开更多
In this study, the effect of substituting boron compounds with glycol-based grinding aids to the compressive strength performances of cement was investigated. Monoethylene glycol (MEG) and diethylene glycol (DEG) were...In this study, the effect of substituting boron compounds with glycol-based grinding aids to the compressive strength performances of cement was investigated. Monoethylene glycol (MEG) and diethylene glycol (DEG) were used as glycol-based grinding aids, and anhydrous borax and boric acid were used as boron compounds in the tests. CEM I type cement production was carried out with the addition of grinding aid mixtures to Portland clinker and some gypsum in the experiments. All produced cement samples were tested for Blaine fineness, xrf elemental analysis and 2, 7 and 28 days compressive strength tests. Test results of grinding aids of MEG and boron compounds mixture showed no increase in any age of compressive strengths performances related to MEG used itself. However, with the addition of boron compounds to DEG increased grinding aid performance at all ages (2, 7 and 28 days). Possible reasons for this increase could be borate esters formed with DEG and boric acid in a basic medium.展开更多
文摘X-ray fluorescence (XRF) analysis utilizes particle size which is resulted from milling of a material. The milling ensures uniform and fine grained powder. The finer and more uniform the particle size is, the better the result and easier it is for material quality control. To ensure uniformity in particle size and finer powder, a comparative analysis was conducted with different grinding aids and pressed pellet method was used in obtaining analysis results. Pressed pellets of cement raw meal sample milled with different grinding aids (graphite, aspirin and lithium borate) were subjected to XRF. Graphite produced better particle size uniformity with a corresponding standard deviation that made quality control of raw meal easier and better than aspirin and lithium borate.
基金Funded by the National Natural Science Foundation of China(No.50872151)
文摘Effects of modified triethanolamine as cement grinding aids on particles characteristics and mechanical property of cement were studied, and its reaction mechanism was analyzed by IR, Zeta potential, SEM, XRD and TG-DTA. The results show that the content of 3-32 μm particles for cement with 0.015% modified triethanolamine(M-TEA) is increased by 12.4%, and the compressive strengths of cement with 0.03% M-TEA are increased by 5.5 and 8.2 MPa at 3 and 28 days, respectively. And both the grinding and enhancement effects of M-TEA on cement are better than triethanolamine. The mechanism analysis shows that M-TEA not only has the amino and hydroxyl groups of TEA, but also has the ester, carbonyl, carboxyl groups which easily combine with metal ions of cement minerals, resulting in that M-TEA can promote surface adsorption and shield the unsaturated charges in the surface and crack section of particles, thus particles reunion is prevented and grinding efficiency is improved. Enhancement of M-TEA on cement mainly lies in that it can promote or induce hydration reaction of cement mineral with gypsum and water, which accelerates formation of hydration products, and then improves the structure and morphology of cement hydration products, thus the uniformity and compactness of product structure is increased.
基金Funded by National Natural Science Foundation of China(No.51578141)National Program on Key Basic Research Project(973 Program)(No.2015CB655102)Ministry of Science and Technology of China(No.2016YFE011820)
文摘Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence(XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20-100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed.
基金Funds by Murat Calli (Ph.D. Student in the Department of Chemical Engineeringin Selcuk University and Quality Manager in SYCS Construction and CementCompany)
文摘In this study, the effect of substituting boron compounds with glycol-based grinding aids to the compressive strength performances of cement was investigated. Monoethylene glycol (MEG) and diethylene glycol (DEG) were used as glycol-based grinding aids, and anhydrous borax and boric acid were used as boron compounds in the tests. CEM I type cement production was carried out with the addition of grinding aid mixtures to Portland clinker and some gypsum in the experiments. All produced cement samples were tested for Blaine fineness, xrf elemental analysis and 2, 7 and 28 days compressive strength tests. Test results of grinding aids of MEG and boron compounds mixture showed no increase in any age of compressive strengths performances related to MEG used itself. However, with the addition of boron compounds to DEG increased grinding aid performance at all ages (2, 7 and 28 days). Possible reasons for this increase could be borate esters formed with DEG and boric acid in a basic medium.