A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-mac...A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-machine-based data fusion algorithm and also design the gripper system by combining data fusion with CAN bus and CORBA technology, which provides the gripper system with outstanding characteristics such as modularization and intelligence. A multisensory integration gripper test bed is finally built on which a circuit board replacement job based on Internet-based teleoperation is achieved. The experimental results verify the validity of this gripper system design.展开更多
A study about the action control of a dexterous mechanical gripper based on stereo-vision system was proposed. The vision-based system was used to replace the data-glove for gesture measurement. The stereo vision theo...A study about the action control of a dexterous mechanical gripper based on stereo-vision system was proposed. The vision-based system was used to replace the data-glove for gesture measurement. The stereo vision theory was applied to calculate the 3D information of the hand gesture. The information was used to generate the grasping action parameters of a 3-finger dexterous mechanical gripper. Combined with a force feedback device, a closed control loop could be constructed. The test for the precision of the algorithms and action control simulation result were shown in the paper.展开更多
A system using microgripper for gluing and adhesive bonding in automatic microassembly was designed, implemented, and tested. The development of system is guided by axiomatic design principle. With a compliant PU micr...A system using microgripper for gluing and adhesive bonding in automatic microassembly was designed, implemented, and tested. The development of system is guided by axiomatic design principle. With a compliant PU microgripper, regional-edge-statistics (RES) algorithm, and PD controller, a visual-servoing system was implemented for gripping micro object, gluing adhesive, and operating adhesive bonding. The RES algorithm estimated and tracked a gripper’s centroid to implement a visual-servoing control in the microassembly operation. The main specifications of the system are: gripping range of 60~80μm, working space of 7mm×5.74mm×15mm, system bandwidth of 15Hz. In the performance test, a copper rod with diameter 60μm was automatically gripped and transported for transferring glue and bonding. The 60μm copper rod was dipped into a glue container and moved, pressed and bonding to a copper rod of 380μm. The amount of binding glue was estimated about 5.7nl.展开更多
In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping fo...In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed.To improve these characteristics,a novel pneumatic soft gripper with a jointed endoskeleton structure(E-Gripper)is developed,in which the muscle actuating function has been separated from the force bearing function.The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber.The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger Thus,the gripping force and action response speed can be increased while the flexibility is maintained.Through experiments,the bending angle of each finger segment,response time,and gripping force of the E-Gripper have been measured,which provides a basis for designing and controlling the soft gripper The test results have shown that the maximum gripping force of the E-Gripper can be 35 N,which is three times greater than that of a fully soft gripper(FS-Gripper)of the same size.At the maximum charging pressure of 150 kPa,the response time is1.123 s faster than that of the FS-Gripper.The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper,but its gripping force is also obviously increased,and the response time is reduced.The E-Gripper thus shows great potential for future development and applications.展开更多
This paper presents a vacuum gripper (as an actuator of an intelligent micromanipulator) for micro objects (with a diameter of 100 - 300μm) assembly tasks. The gripper is composed of a vacuum unit and a control u...This paper presents a vacuum gripper (as an actuator of an intelligent micromanipulator) for micro objects (with a diameter of 100 - 300μm) assembly tasks. The gripper is composed of a vacuum unit and a control unit. The vacuum unit with a proportional valve and a pressure sensor, and the control unit with a PC + MCU two-layered control architecture are designed. The mechanical structure, workflow and major programs of the micro-gripper are presented. This paper discusses the major components of the adhesion force acting on micro objects. Some equations of the operation conditions m three phases of pick, hold and place are derived by mechanics analysis. The pneumatic system's pressure loss is inevitable. There are some formulas for calculating the amount of the pressure loss, but parameters in formulas are diffficult to be quantified and evaluated. To control the working pressure accurately, a pressure controller based on fuzzy logic is designed. With MATLAB's fuzzy logic toolbox, simulation experiments are performed to validate the performance of the fuzzy PD controller. The gripper is characterized by a steady and reliable performance and a simple structure, and it is suitable for handling micro objects with a sub-millimeter size.展开更多
The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high...The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high performance in terms of gripping possibilities and a very low manufacturing cost. Source of inspiration was the human hand, which is able to catch objects by only using two fingers. The analyzed anthropomorphic gripper has two fingers, with two phalanxes each, and is based on a new mechanism with articulated bars. The kinematic analysis performed on the gripping mechanism reveals the optimal displacement in the translational coupling, which was experimentally validated. The gripping possibilities were increased by attaching clamping jaws to each phalanx. The clamping jaws have been attached by means of spherical couplings, thus offering the possibility to catch objects with any type of surface. By carrying out gripping tests with different objects, we underline the importance of a safe use of the two-fingered anthropomorphic grippers in different applications. Due to the innovative mechanical structure, the gripper can insure the minimal gripping conditions, whilst the complexity of the objects that can be gripped make it suitable for the use in robots.展开更多
文摘A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-machine-based data fusion algorithm and also design the gripper system by combining data fusion with CAN bus and CORBA technology, which provides the gripper system with outstanding characteristics such as modularization and intelligence. A multisensory integration gripper test bed is finally built on which a circuit board replacement job based on Internet-based teleoperation is achieved. The experimental results verify the validity of this gripper system design.
文摘A study about the action control of a dexterous mechanical gripper based on stereo-vision system was proposed. The vision-based system was used to replace the data-glove for gesture measurement. The stereo vision theory was applied to calculate the 3D information of the hand gesture. The information was used to generate the grasping action parameters of a 3-finger dexterous mechanical gripper. Combined with a force feedback device, a closed control loop could be constructed. The test for the precision of the algorithms and action control simulation result were shown in the paper.
文摘A system using microgripper for gluing and adhesive bonding in automatic microassembly was designed, implemented, and tested. The development of system is guided by axiomatic design principle. With a compliant PU microgripper, regional-edge-statistics (RES) algorithm, and PD controller, a visual-servoing system was implemented for gripping micro object, gluing adhesive, and operating adhesive bonding. The RES algorithm estimated and tracked a gripper’s centroid to implement a visual-servoing control in the microassembly operation. The main specifications of the system are: gripping range of 60~80μm, working space of 7mm×5.74mm×15mm, system bandwidth of 15Hz. In the performance test, a copper rod with diameter 60μm was automatically gripped and transported for transferring glue and bonding. The 60μm copper rod was dipped into a glue container and moved, pressed and bonding to a copper rod of 380μm. The amount of binding glue was estimated about 5.7nl.
基金Supported by National Natural Science Foundation of China(Grant No.51305202)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20130764)
文摘In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed.To improve these characteristics,a novel pneumatic soft gripper with a jointed endoskeleton structure(E-Gripper)is developed,in which the muscle actuating function has been separated from the force bearing function.The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber.The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger Thus,the gripping force and action response speed can be increased while the flexibility is maintained.Through experiments,the bending angle of each finger segment,response time,and gripping force of the E-Gripper have been measured,which provides a basis for designing and controlling the soft gripper The test results have shown that the maximum gripping force of the E-Gripper can be 35 N,which is three times greater than that of a fully soft gripper(FS-Gripper)of the same size.At the maximum charging pressure of 150 kPa,the response time is1.123 s faster than that of the FS-Gripper.The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper,but its gripping force is also obviously increased,and the response time is reduced.The E-Gripper thus shows great potential for future development and applications.
基金This work was supported bythe National Natural Science Foundation of China (No .60275013) the Natural High Technology Researchand DevelopementProgramof China(No .2004AA844120) .
文摘This paper presents a vacuum gripper (as an actuator of an intelligent micromanipulator) for micro objects (with a diameter of 100 - 300μm) assembly tasks. The gripper is composed of a vacuum unit and a control unit. The vacuum unit with a proportional valve and a pressure sensor, and the control unit with a PC + MCU two-layered control architecture are designed. The mechanical structure, workflow and major programs of the micro-gripper are presented. This paper discusses the major components of the adhesion force acting on micro objects. Some equations of the operation conditions m three phases of pick, hold and place are derived by mechanics analysis. The pneumatic system's pressure loss is inevitable. There are some formulas for calculating the amount of the pressure loss, but parameters in formulas are diffficult to be quantified and evaluated. To control the working pressure accurately, a pressure controller based on fuzzy logic is designed. With MATLAB's fuzzy logic toolbox, simulation experiments are performed to validate the performance of the fuzzy PD controller. The gripper is characterized by a steady and reliable performance and a simple structure, and it is suitable for handling micro objects with a sub-millimeter size.
文摘The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high performance in terms of gripping possibilities and a very low manufacturing cost. Source of inspiration was the human hand, which is able to catch objects by only using two fingers. The analyzed anthropomorphic gripper has two fingers, with two phalanxes each, and is based on a new mechanism with articulated bars. The kinematic analysis performed on the gripping mechanism reveals the optimal displacement in the translational coupling, which was experimentally validated. The gripping possibilities were increased by attaching clamping jaws to each phalanx. The clamping jaws have been attached by means of spherical couplings, thus offering the possibility to catch objects with any type of surface. By carrying out gripping tests with different objects, we underline the importance of a safe use of the two-fingered anthropomorphic grippers in different applications. Due to the innovative mechanical structure, the gripper can insure the minimal gripping conditions, whilst the complexity of the objects that can be gripped make it suitable for the use in robots.