期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于MAS协调的CDM GDP时隙动态交易 被引量:7
1
作者 张洪海 胡明华 《信息与控制》 CSCD 北大核心 2009年第6期665-672,679,共9页
针对CDM GDP时隙交换问题,提出一种基于MAS协调的动态交易方法,以增加交换的灵活性和自主性,提高机场资源利用率.采用基于市场机制的协商策略,在SCS基础上建立了有条件的时隙拍卖交易机制,并给出了MAS协调交易模型,该模型可以使航空公... 针对CDM GDP时隙交换问题,提出一种基于MAS协调的动态交易方法,以增加交换的灵活性和自主性,提高机场资源利用率.采用基于市场机制的协商策略,在SCS基础上建立了有条件的时隙拍卖交易机制,并给出了MAS协调交易模型,该模型可以使航空公司灵活、自主地选择交易对象;应用基于BDI的协调推理机制,给出了基于效用的航空公司运控中心(AOC)Agent内部推理策略,以及效用计算过程.最后,采用Microsoft.NET平台开发了所提方法的仿真系统,通过一些典型的CDM GDP算例对所提方法进行仿真验证和对比分析,结果表明了其有效性. 展开更多
关键词 空中交通流量管理 协同决策 地面延误程序 时隙交换 MAS
下载PDF
CDM GDP技术在我国机场流量优化管理中的应用研究
2
作者 周庆松 张军 张学军 《航空电子技术》 2003年第z1期186-190,共5页
借鉴美国CDM GDP的成功经验,结合我国的实际,对CDM GDP在我国机场流量优化管理中的应用进行了初步的研究.由于恶劣天气等原因,使机场降落容量大幅度降低,必然导致降落航班延误.通过CDM GDP的关键技术RBS和压缩,得到每架延误航班的起飞时... 借鉴美国CDM GDP的成功经验,结合我国的实际,对CDM GDP在我国机场流量优化管理中的应用进行了初步的研究.由于恶劣天气等原因,使机场降落容量大幅度降低,必然导致降落航班延误.通过CDM GDP的关键技术RBS和压缩,得到每架延误航班的起飞时间,从而使被延误的航班在起飞机场等待,避免了改航、备降和空中等待等问题,提高了安全性,降低了费用.在满足公平性的同时,使航班的总延误最小. 展开更多
关键词 协同决策(CDM:Collaborative DECISION Making) 地面延误程序(gdp:ground delay program) 航班-时隙分配(RBS:Ration By Schedule) 压缩 公平性
下载PDF
Stochastic Air Traffic Flow Management for Demand and Capacity Balancing Under Capacity Uncertainty
3
作者 CHEN Yunxiang XU Yan ZHAO Yifei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期656-674,共19页
This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)f... This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework. 展开更多
关键词 air traffic flow management demand and capacity balancing flight delays sector capacity uncertainty ground delay programs probabilistic scenario trees
下载PDF
需求不确定条件下考虑通用航空的地面等待策略 被引量:1
4
作者 朱士新 《中国民航大学学报》 CAS 2012年第3期13-17,共5页
运输航空是中国空中交通流量主要成分,随着低空空域的逐步开放,日益增多的通用航空器会导致空中交通更加拥堵,因此,有必要制定一套考虑通用航空的流量管理运行方法。通过对有通用航空参与的地面等待程序的研究,提出了考虑通用航空需求... 运输航空是中国空中交通流量主要成分,随着低空空域的逐步开放,日益增多的通用航空器会导致空中交通更加拥堵,因此,有必要制定一套考虑通用航空的流量管理运行方法。通过对有通用航空参与的地面等待程序的研究,提出了考虑通用航空需求不确定性的地面等待模型,采用基于公平性的随机动态地面延迟算法求解。算例仿真结果表明,相较传统地面等待策略,改进后的模型能减小延误成本,提高机场时隙利用率,为管制员提供决策支持。 展开更多
关键词 通用航空 地面等待策略 需求不确定性 整数规划 算法
下载PDF
Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 被引量:2
5
作者 Yutong CHEN Minghua HU +1 位作者 Yan XU Lei YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期338-353,共16页
Reinforcement Learning(RL)techniques are being studied to solve the Demand and Capacity Balancing(DCB)problems to fully exploit their computational performance.A locally gen-eralised Multi-Agent Reinforcement Learning... Reinforcement Learning(RL)techniques are being studied to solve the Demand and Capacity Balancing(DCB)problems to fully exploit their computational performance.A locally gen-eralised Multi-Agent Reinforcement Learning(MARL)for real-world DCB problems is proposed.The proposed method can deploy trained agents directly to unseen scenarios in a specific Air Traffic Flow Management(ATFM)region to quickly obtain a satisfactory solution.In this method,agents of all flights in a scenario form a multi-agent decision-making system based on partial observation.The trained agent with the customised neural network can be deployed directly on the corresponding flight,allowing it to solve the DCB problem jointly.A cooperation coefficient is introduced in the reward function,which is used to adjust the agent’s cooperation preference in a multi-agent system,thereby controlling the distribution of flight delay time allocation.A multi-iteration mechanism is designed for the DCB decision-making framework to deal with problems arising from non-stationarity in MARL and to ensure that all hotspots are eliminated.Experiments based on large-scale high-complexity real-world scenarios are conducted to verify the effectiveness and efficiency of the method.From a statis-tical point of view,it is proven that the proposed method is generalised within the scope of the flights and sectors of interest,and its optimisation performance outperforms the standard computer-assisted slot allocation and state-of-the-art RL-based DCB methods.The sensitivity analysis preliminarily reveals the effect of the cooperation coefficient on delay time allocation. 展开更多
关键词 Air traffic flow management Demand and capacity bal-ancing Deep Q-learning network Flight delays GENERALISATION ground delay program Multi-agent reinforcement learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部