Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improveme...Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.展开更多
The suitability of five methods was discussed here,taking the typical results from in-situ load test of Renshou Mansion and Caifu Plaza in Yueyang City for example.It shows that bearing capacity can be obtained by the...The suitability of five methods was discussed here,taking the typical results from in-situ load test of Renshou Mansion and Caifu Plaza in Yueyang City for example.It shows that bearing capacity can be obtained by the proportion load and limit load from p-s curve with the first and the second point of contraflexure easily.It is recommended that the accurate value of bearing capacity can be obtained by hyperbola fitting method and minimum curvature radius method theoretically.The rebound method is clear in principle,in which the elastoplasticity characteristic is thought about.Out of consideration for the unsteadiness and unobviousness of bearing capacity from relative settlement method,it can be only adopted as reference.So bearing capacity of soft rock ground should be determined by weathering condition of soft rock and curve type.展开更多
As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ en...As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ environmental conditions,leading to distortion of the measured parameters.Herein,a coring and testing systems retaining in-situ geological conditions is presented:the coring system that obtains in-situ rock samples,and the transfer and testing system that stores and analyzes the rocks under a reconstructed environment.The ICP-Coring system mainly consists of the pressure controller,active insulated core reactor and insulation layer and sealing film.The ultimate bearing strength of 100 MPa for pressurepreservation,temperature control accuracy of 0.97%for temperature-retained are realized.CH_(4)and CO permeability of the optimized sealing film are as low as 3.85 and 0.33 ppm/min.The average tensile elongation of the film is 152.4%and the light transmittance is reduced to 0%.Additionally,the pressure and steady-state temperature accuracy for reconstructing the in-situ environment of transfer and storage system up to 1%and±0.2 is achieved.The error recorded of the noncontact sensor ring made of lowdensity polymer is less than 6%than that of the contact test.The system can provide technical support for the deep in-situ rock mechanics research,improving deep resource acquisition capabilities and further clarifying deep-earth processes.展开更多
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a...This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.展开更多
To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at differen...To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.展开更多
The Kenya Rift Valley is relatively prone to underground erosion ground fissures and associated disasters,which gravely hinder local engineering construction and economic development.In this research,we performed fiel...The Kenya Rift Valley is relatively prone to underground erosion ground fissures and associated disasters,which gravely hinder local engineering construction and economic development.In this research,we performed field and experimental studies on ground fissures in the Kenya Rift Valley area,and determined the structural characteristics of underground erosion fissures.Based on a geological survey of the area,we generalized a geological model for typical ground fissures and reproduced the intermediate process of ground fissure propagation using a large-scale physical model test.Further,the development process of underground erosion fissures were categorized into four stages:uniform infiltration,preferential infiltration,cavity expansion,and collapse formation stages.During the development of underground erosion fissures,water content was distributed symmetrically along the fissures,and these fissures acted as the primary infiltration paths of water.When the ground collapsed,the increase in negative pore water pressure was greater,whereas the increase in positive pore water pressure was less in the shallow soil;moreover,in the deep soil,the increase in positive pore water pressure was greater than that of negative pore water pressure.Additionally,the earth pressure increment initially increased and then decreased with the development of erosion.During underground erosion collapse,the water content and pore water pressure appeared to increase and decrease rapidly.These results can be employed to predict the occurrence of underground erosion ground fissures and the resulting soil collapse.展开更多
With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence d...With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence depths is the basis for exploring deep into the earth,with the core and premise being the acquisition and testing of deep in-situ core specimens.Based on the original idea of deep in-situ condition preserved coring(ICP-Coring)and testing,combined with theoretical modeling,numerical analysis,test platform development,indoor testing and engineering application,the principles and technologies of deep ICP-Coring are developed.This principle and technology consists of five parts:in-situ pressurepreserved coring(IPP-Coring),in-situ substance-preserved coring(ISP-Coring),in-situ temperaturepreserved coring(ITP-Coring),in-situ light-preserved coring(ILP-Coring),and in-situ moisturepreserved coring(IMP-Coring).The theory and technology of temperature and pressure reconstruction at different occurrence depths and in different environments are proposed,and prototype trial production was completed by following the principle of displacement and tests based on the in-situ reconstructed environment.The notable advances are as follows:(1)Deep in-situ coring system:A pressure-preserved controller with an ultimate bearing capacity greater than 140 MPa,highperformance(temperature-resistant,pressure-resistant,and low thermally conductive)temperaturepreserved materials,an active temperature control system,and high-barrier quality-preserved membrane materials were developed;a deep ICP-Coring capacity calibration platform was independently developed,a deep in-situ coring technology system was developed,and the acquisition of deep in-situ cores was realized.(2)In-situ storage displacement system:Following the dual-circuit hydraulic design idea,a single-drive source push-pull composite grabbing mechanism was designed;the design of the overall structure for the deep in-situ displacement storage system and ultrahigh pressure cabin structure was completed,which could realize docking the coring device and core displacement in the in-situ reconstructed environment.(3)Test analysis system:A noncontact acoustic-electric-magnetic test system was developed under the in-situ reconstructed environment,and the errors between the test results and traditional contact test results were mostly less than 10%;a detachable deep in-situ core true triaxial test system was developed,which could perform loading tests for deep in-situ cores.The relevant technological achievements were successfully applied to the exploration and development of deep resources,such as deep mines,deep-sea natural gas hydrates,and deep oil and gas.The research results provide technical and equipment support for the construction of a theoretical system for deep in-situ rock mechanics,the development of deep earth resources and energy,and the scientific exploration of different layers and occurrence depths(deep and ultradeep)of the Earth.展开更多
The effects of temperature and wavelength choice on in-situ dissolution test instrument of Cimetidine were studied. Absorbance (A)〈 1.0 is required when using a fiber-optic dissolution test system. The detection wa...The effects of temperature and wavelength choice on in-situ dissolution test instrument of Cimetidine were studied. Absorbance (A)〈 1.0 is required when using a fiber-optic dissolution test system. The detection wavelength of 2 (218 nm) was replaced by 244 nm to carry out this test. The absorbance of Cimetidine solution at different temperature showed an obvious change. Calibration of Cimetidine solution should be tested at the same temperature (37° C) with the test solution. A suitable wavelength with smaller tangent slope could be chosen for in-situ dissolution test of Cimetidine tablets.展开更多
Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of col...Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests.展开更多
Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test ...Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.展开更多
A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wh...A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wheels that could be towed. There is an independentelectrical measurement and control system to test the rotational speed of rotors, the gas pressureof the compressor, the exhaust gas temperature, etc. Cooperated with the oil truck and the electricpower supply truck, the turbofan engine could be preserved on the ground and started to the idlingregime. While running, the parameter of the engine could be recorded, disposed and displayed. Inaddition, the facilities were successfully applied to the plateau experiment in order to researchhow the atmosphere pressure affects the start of engines. Some data are given in the paper.展开更多
In order to clarify the deformation and failure mechanism of retaining structure ground under liquefying, a series of shaking table tests was performed. The test results suggest that the strength decrease and local li...In order to clarify the deformation and failure mechanism of retaining structure ground under liquefying, a series of shaking table tests was performed. The test results suggest that the strength decrease and local liquefaction of subsoil are the leading factors in the deformation and failure of retaining structures. The movement of the ground mainly manifests the lateral displacement under liquefaction. At the backfill layer, liquefaction will be rapidly reached in far field whereas the excess pore pressure is slowly increased nearby the wall under shaking.展开更多
750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and step...750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.展开更多
Urbanization is the physical growth of urban areas as a result of global change. As the land cost is increasing tremendously and decreasing availability of good construction site is building up pressure on the enginee...Urbanization is the physical growth of urban areas as a result of global change. As the land cost is increasing tremendously and decreasing availability of good construction site is building up pressure on the engineers to utilize even the poorest site either by providing special type of foundation or by improving ground in urban centres. In this context literature is reviewed for use of landfill site for housing. The site exploration for old dump site was carried out to assess subsoil characteristics. The objective was to evolve strategy for economical feasible ground improvement technique to obtain permissible bearing capacity of 150 kPa and total settlement not more than 50 mm. The tests carried out are load tests with geotextile mat and stone filled wire mess matress. The analysis was attempted to evaluate the soil response and bearing capacity. The site can be used for construction of low rise housing for rehabilitation of displaced persons under TP scheme within city area utilizing old landfill sites.展开更多
The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation...The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation.展开更多
A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of Ch...A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of China and the determined oilfield in-situ stresses is more accurate than that based on one single method.展开更多
In-situ reactive compatibilization of high-density polyethylene (HDPE)/ground tire rubber (GTR) blends by dicumyl peroxide (DCP) and HY-2045 - a kind of thermoplastic phenolic resin without catalyst was inves...In-situ reactive compatibilization of high-density polyethylene (HDPE)/ground tire rubber (GTR) blends by dicumyl peroxide (DCP) and HY-2045 - a kind of thermoplastic phenolic resin without catalyst was investigated by studying the mor-phology, stress and strain behavior, dynamic mechanical properties and crystallization performance of the blends. Scanning e-lectron microscopy (SEM) results show that there are a lot of fibrous materials distributing in the interface, which connects the dispersed phase with the matrix and obtains better interfacial strength for prominent mechanical properties. The addition of compatibilizers results in the decrease of crystallinity of the blends and the disappearance of an obvious yield phenomenon, which was proved by the differential scanning calorimeter (DSC) test and X-ray diffraction (XRD) characterization Although the crystallinity of the blends decreases,the tensile strength and tensile strain of the blends significantly increases, especially for the HDPE/GTR/DCP/HY-2045 blends, which is possibly attributed to the good compatibility of the blends owing to the in-situ interface crosslinking. In addition, it is found that the compatibilizing HDPE/GTR blends shows a higher tan^ peak temperature and a broaden transition peak for GTR phase.展开更多
作者以他个人的观点,对该文献中重要部分进行了点评,指出:空间软件地面可靠性测试尽管困难重重且有诸多限制,但不能放松甚至放弃执行现有的软件地面测试标准;应从"精神号"火星探测器飞行失败中吸取教训,加强软件地面测试,包...作者以他个人的观点,对该文献中重要部分进行了点评,指出:空间软件地面可靠性测试尽管困难重重且有诸多限制,但不能放松甚至放弃执行现有的软件地面测试标准;应从"精神号"火星探测器飞行失败中吸取教训,加强软件地面测试,包括传统软件黑盒和白盒测试方法中的典型测试项目(如:健壮测试、应力测试、极值测试、随机测试等);已经公布的新软件研发标准——Aerospace Report No.TOR-2004(3909)-3537,Software Development Standard for Space Systems值得我们参考。展开更多
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
基金Projects(RG148/12AET,RG086/10AET) supported by the UMRG,MalaysiaProject(PS05812010B) supported by the Post Graduate Research Fund,Malaysia
文摘Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.
基金National Natural Science Foundation of China(No.50874043)Scientific Research Fund of Hunan Province Education Department(No.09A028)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(No.[2007]1108)
文摘The suitability of five methods was discussed here,taking the typical results from in-situ load test of Renshou Mansion and Caifu Plaza in Yueyang City for example.It shows that bearing capacity can be obtained by the proportion load and limit load from p-s curve with the first and the second point of contraflexure easily.It is recommended that the accurate value of bearing capacity can be obtained by hyperbola fitting method and minimum curvature radius method theoretically.The rebound method is clear in principle,in which the elastoplasticity characteristic is thought about.Out of consideration for the unsteadiness and unobviousness of bearing capacity from relative settlement method,it can be only adopted as reference.So bearing capacity of soft rock ground should be determined by weathering condition of soft rock and curve type.
基金supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)National Natural Science Foundation of China(No.51827901,U2013603,and 52004166)。
文摘As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ environmental conditions,leading to distortion of the measured parameters.Herein,a coring and testing systems retaining in-situ geological conditions is presented:the coring system that obtains in-situ rock samples,and the transfer and testing system that stores and analyzes the rocks under a reconstructed environment.The ICP-Coring system mainly consists of the pressure controller,active insulated core reactor and insulation layer and sealing film.The ultimate bearing strength of 100 MPa for pressurepreservation,temperature control accuracy of 0.97%for temperature-retained are realized.CH_(4)and CO permeability of the optimized sealing film are as low as 3.85 and 0.33 ppm/min.The average tensile elongation of the film is 152.4%and the light transmittance is reduced to 0%.Additionally,the pressure and steady-state temperature accuracy for reconstructing the in-situ environment of transfer and storage system up to 1%and±0.2 is achieved.The error recorded of the noncontact sensor ring made of lowdensity polymer is less than 6%than that of the contact test.The system can provide technical support for the deep in-situ rock mechanics research,improving deep resource acquisition capabilities and further clarifying deep-earth processes.
基金Major Research Plan of National Natural Science Foundation of China Under Grant No.90815009National Natural Science Foundation of China Under Grant No.50378031 and 50178027Western Transport Construction Technology Projects Under Grant No.2009318000100
文摘This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
基金Key Subject for Science Research and De-velopment Plan of Railway Ministry (No.2006G004-B)
文摘To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.
基金supported by the National Science Foundation of China(No.41920104010,41877250,and 41807243)。
文摘The Kenya Rift Valley is relatively prone to underground erosion ground fissures and associated disasters,which gravely hinder local engineering construction and economic development.In this research,we performed field and experimental studies on ground fissures in the Kenya Rift Valley area,and determined the structural characteristics of underground erosion fissures.Based on a geological survey of the area,we generalized a geological model for typical ground fissures and reproduced the intermediate process of ground fissure propagation using a large-scale physical model test.Further,the development process of underground erosion fissures were categorized into four stages:uniform infiltration,preferential infiltration,cavity expansion,and collapse formation stages.During the development of underground erosion fissures,water content was distributed symmetrically along the fissures,and these fissures acted as the primary infiltration paths of water.When the ground collapsed,the increase in negative pore water pressure was greater,whereas the increase in positive pore water pressure was less in the shallow soil;moreover,in the deep soil,the increase in positive pore water pressure was greater than that of negative pore water pressure.Additionally,the earth pressure increment initially increased and then decreased with the development of erosion.During underground erosion collapse,the water content and pore water pressure appeared to increase and decrease rapidly.These results can be employed to predict the occurrence of underground erosion ground fissures and the resulting soil collapse.
基金the National Natural Science Foundation of China(No.51827901)the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)Shenzhen Key Research Projects(No.JSGG20220831105002005).
文摘With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence depths is the basis for exploring deep into the earth,with the core and premise being the acquisition and testing of deep in-situ core specimens.Based on the original idea of deep in-situ condition preserved coring(ICP-Coring)and testing,combined with theoretical modeling,numerical analysis,test platform development,indoor testing and engineering application,the principles and technologies of deep ICP-Coring are developed.This principle and technology consists of five parts:in-situ pressurepreserved coring(IPP-Coring),in-situ substance-preserved coring(ISP-Coring),in-situ temperaturepreserved coring(ITP-Coring),in-situ light-preserved coring(ILP-Coring),and in-situ moisturepreserved coring(IMP-Coring).The theory and technology of temperature and pressure reconstruction at different occurrence depths and in different environments are proposed,and prototype trial production was completed by following the principle of displacement and tests based on the in-situ reconstructed environment.The notable advances are as follows:(1)Deep in-situ coring system:A pressure-preserved controller with an ultimate bearing capacity greater than 140 MPa,highperformance(temperature-resistant,pressure-resistant,and low thermally conductive)temperaturepreserved materials,an active temperature control system,and high-barrier quality-preserved membrane materials were developed;a deep ICP-Coring capacity calibration platform was independently developed,a deep in-situ coring technology system was developed,and the acquisition of deep in-situ cores was realized.(2)In-situ storage displacement system:Following the dual-circuit hydraulic design idea,a single-drive source push-pull composite grabbing mechanism was designed;the design of the overall structure for the deep in-situ displacement storage system and ultrahigh pressure cabin structure was completed,which could realize docking the coring device and core displacement in the in-situ reconstructed environment.(3)Test analysis system:A noncontact acoustic-electric-magnetic test system was developed under the in-situ reconstructed environment,and the errors between the test results and traditional contact test results were mostly less than 10%;a detachable deep in-situ core true triaxial test system was developed,which could perform loading tests for deep in-situ cores.The relevant technological achievements were successfully applied to the exploration and development of deep resources,such as deep mines,deep-sea natural gas hydrates,and deep oil and gas.The research results provide technical and equipment support for the construction of a theoretical system for deep in-situ rock mechanics,the development of deep earth resources and energy,and the scientific exploration of different layers and occurrence depths(deep and ultradeep)of the Earth.
基金the Xinjiang Uygur Autonomous Region Natural Science Fund (No.2011211A041) Xinjiang Uygur Autonomous Region Science and Technology Plan (No.200910107)
文摘The effects of temperature and wavelength choice on in-situ dissolution test instrument of Cimetidine were studied. Absorbance (A)〈 1.0 is required when using a fiber-optic dissolution test system. The detection wavelength of 2 (218 nm) was replaced by 244 nm to carry out this test. The absorbance of Cimetidine solution at different temperature showed an obvious change. Calibration of Cimetidine solution should be tested at the same temperature (37° C) with the test solution. A suitable wavelength with smaller tangent slope could be chosen for in-situ dissolution test of Cimetidine tablets.
文摘Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests.
文摘Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.
文摘A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wheels that could be towed. There is an independentelectrical measurement and control system to test the rotational speed of rotors, the gas pressureof the compressor, the exhaust gas temperature, etc. Cooperated with the oil truck and the electricpower supply truck, the turbofan engine could be preserved on the ground and started to the idlingregime. While running, the parameter of the engine could be recorded, disposed and displayed. Inaddition, the facilities were successfully applied to the plateau experiment in order to researchhow the atmosphere pressure affects the start of engines. Some data are given in the paper.
文摘In order to clarify the deformation and failure mechanism of retaining structure ground under liquefying, a series of shaking table tests was performed. The test results suggest that the strength decrease and local liquefaction of subsoil are the leading factors in the deformation and failure of retaining structures. The movement of the ground mainly manifests the lateral displacement under liquefaction. At the backfill layer, liquefaction will be rapidly reached in far field whereas the excess pore pressure is slowly increased nearby the wall under shaking.
文摘750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.
文摘Urbanization is the physical growth of urban areas as a result of global change. As the land cost is increasing tremendously and decreasing availability of good construction site is building up pressure on the engineers to utilize even the poorest site either by providing special type of foundation or by improving ground in urban centres. In this context literature is reviewed for use of landfill site for housing. The site exploration for old dump site was carried out to assess subsoil characteristics. The objective was to evolve strategy for economical feasible ground improvement technique to obtain permissible bearing capacity of 150 kPa and total settlement not more than 50 mm. The tests carried out are load tests with geotextile mat and stone filled wire mess matress. The analysis was attempted to evaluate the soil response and bearing capacity. The site can be used for construction of low rise housing for rehabilitation of displaced persons under TP scheme within city area utilizing old landfill sites.
基金supported by National Natural Science Foundation of China (Grant NOs. 41877250, 41272284)the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources (No. EFGD20240601)the Natural Science Foundation of Shaanxi Province-General Project (grant number 2023-JC-YB-231)-Suitability Evaluation of Precast Prestressed Underground Comprehensive Pipe Gallery Crossing Active Ground Fissure。
文摘The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation.
文摘A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of China and the determined oilfield in-situ stresses is more accurate than that based on one single method.
文摘In-situ reactive compatibilization of high-density polyethylene (HDPE)/ground tire rubber (GTR) blends by dicumyl peroxide (DCP) and HY-2045 - a kind of thermoplastic phenolic resin without catalyst was investigated by studying the mor-phology, stress and strain behavior, dynamic mechanical properties and crystallization performance of the blends. Scanning e-lectron microscopy (SEM) results show that there are a lot of fibrous materials distributing in the interface, which connects the dispersed phase with the matrix and obtains better interfacial strength for prominent mechanical properties. The addition of compatibilizers results in the decrease of crystallinity of the blends and the disappearance of an obvious yield phenomenon, which was proved by the differential scanning calorimeter (DSC) test and X-ray diffraction (XRD) characterization Although the crystallinity of the blends decreases,the tensile strength and tensile strain of the blends significantly increases, especially for the HDPE/GTR/DCP/HY-2045 blends, which is possibly attributed to the good compatibility of the blends owing to the in-situ interface crosslinking. In addition, it is found that the compatibilizing HDPE/GTR blends shows a higher tan^ peak temperature and a broaden transition peak for GTR phase.
文摘作者以他个人的观点,对该文献中重要部分进行了点评,指出:空间软件地面可靠性测试尽管困难重重且有诸多限制,但不能放松甚至放弃执行现有的软件地面测试标准;应从"精神号"火星探测器飞行失败中吸取教训,加强软件地面测试,包括传统软件黑盒和白盒测试方法中的典型测试项目(如:健壮测试、应力测试、极值测试、随机测试等);已经公布的新软件研发标准——Aerospace Report No.TOR-2004(3909)-3537,Software Development Standard for Space Systems值得我们参考。
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.