Classification of normal gait from pathological gait as then can be used as indicator of falling among subjects requires the correct choice of sensor location in the insole. Such a flexi force- sensor can be used unde...Classification of normal gait from pathological gait as then can be used as indicator of falling among subjects requires the correct choice of sensor location in the insole. Such a flexi force- sensor can be used underneath foot to measure vertical ground reaction force. To start with, the most relevant information (parameters) that can characterize the recorded signals are extracted from the vertical ground reaction force signals. Then Receiver Operating Characteristic curve is used to evaluate the features upon 8 sensors underneath each foot located at different locations. To confirm results obtained, features are passed upon a chosen classifier, in this paper K-nearest neighbors algorithm is chosen. Results show that the sensor located at the inner arch of the sole of the foot (i.e. at the mid foot) holds the most relevant information needed for better classification compared to other sensors.展开更多
In the present paper, the ground reaction force (GRF) acting on foot in slow squat was determined through a force measuring system, and at the same time, the kinematic data of human squat were obtained by analyzing ...In the present paper, the ground reaction force (GRF) acting on foot in slow squat was determined through a force measuring system, and at the same time, the kinematic data of human squat were obtained by analyzing the photographed image sequences. According to the height and body weight, six healthy volunteers were selected, three men in one group and the other three women in another group, and the fundamental parameters of subjects were recorded, including body weight, height and age, etc. Based on the anatomy characteristics, some markers were placed on the right side of joints. While the subject squatted at slow speed on the force platform, the ground reaction forces on the forefoot and heel for each foot were obtained through calibrated force platform. The analysis results show that the reaction force on heel is greater than that on forefoot, and double feet have nearly constant force. Moreover, from processing and analyzing the synchronously photographed image sequences in squat, the kinematic data of human squat were acquired, including mainly the curves of angle, angular velocity and angular acceleration varied with time for knee, hip and ankle joints in a sagittal plane. The obtained results can offer instructive reference for photographing and analyzing the movements of human bodies, diagnosing some diseases, and establishing in the future appropriate mathematical models for the human motion.展开更多
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh...To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.展开更多
文摘Classification of normal gait from pathological gait as then can be used as indicator of falling among subjects requires the correct choice of sensor location in the insole. Such a flexi force- sensor can be used underneath foot to measure vertical ground reaction force. To start with, the most relevant information (parameters) that can characterize the recorded signals are extracted from the vertical ground reaction force signals. Then Receiver Operating Characteristic curve is used to evaluate the features upon 8 sensors underneath each foot located at different locations. To confirm results obtained, features are passed upon a chosen classifier, in this paper K-nearest neighbors algorithm is chosen. Results show that the sensor located at the inner arch of the sole of the foot (i.e. at the mid foot) holds the most relevant information needed for better classification compared to other sensors.
基金supported by the National Natural Science Foundation of China (10702048 and 11102126)Natural Science Foundation of Shanxi (2010021004-1)
文摘In the present paper, the ground reaction force (GRF) acting on foot in slow squat was determined through a force measuring system, and at the same time, the kinematic data of human squat were obtained by analyzing the photographed image sequences. According to the height and body weight, six healthy volunteers were selected, three men in one group and the other three women in another group, and the fundamental parameters of subjects were recorded, including body weight, height and age, etc. Based on the anatomy characteristics, some markers were placed on the right side of joints. While the subject squatted at slow speed on the force platform, the ground reaction forces on the forefoot and heel for each foot were obtained through calibrated force platform. The analysis results show that the reaction force on heel is greater than that on forefoot, and double feet have nearly constant force. Moreover, from processing and analyzing the synchronously photographed image sequences in squat, the kinematic data of human squat were acquired, including mainly the curves of angle, angular velocity and angular acceleration varied with time for knee, hip and ankle joints in a sagittal plane. The obtained results can offer instructive reference for photographing and analyzing the movements of human bodies, diagnosing some diseases, and establishing in the future appropriate mathematical models for the human motion.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.