Geometries, electronic structures and vibrational frequencies of CnAl2± clusters have been investigated by using the B3LYP-DFT method in the range of n = 1~10. At the B3LYP/6-311G level, the ground state structu...Geometries, electronic structures and vibrational frequencies of CnAl2± clusters have been investigated by using the B3LYP-DFT method in the range of n = 1~10. At the B3LYP/6-311G level, the ground state structures of CnAl2± clusters are planar or linear with terminal aluminum atom. In these structures, the C-C bonds are alternately changed between double and triple. The changing magnitude of the averaged bond length decreases with the increase of cluster size. The energetic analysis showed that CnAl2± clusters with even n are more stable than those with odd n.展开更多
基金supported by the National Natural Science Foundation of China (20771069, 20871077)the University Science and Technology Projects of Shanxi Province (20091015)
文摘Geometries, electronic structures and vibrational frequencies of CnAl2± clusters have been investigated by using the B3LYP-DFT method in the range of n = 1~10. At the B3LYP/6-311G level, the ground state structures of CnAl2± clusters are planar or linear with terminal aluminum atom. In these structures, the C-C bonds are alternately changed between double and triple. The changing magnitude of the averaged bond length decreases with the increase of cluster size. The energetic analysis showed that CnAl2± clusters with even n are more stable than those with odd n.