As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With...As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With the rapid development of advanced high-performance aeroengine,the increasing demand of high-altitude simulation test is driving AGTF to improve its test ability and level of automation and intelligence.The modeling method,simulation tool,and control technology are the key factors to support the improvement of the AGTF control system.The main purpose of this paper is to provide an overview of modeling methods,simulation tools,and control technologies in AGTF control system for future research.First,it reviews the evolution of AGTF in the world,from the early formative stage to integration stage.Then,the mathematical modeling method of AGTF for control application is overviewed.Furthermore,the simulation tools used in the AGTF control system are overviewed from numerical simulation to hardware-in-loop simulation and further to semi-physical simulation.Meanwhile,the control technologies used in the AGTF control system are summarized from single-variable control to multivariable integrated control,and from classical control theory to modern control theory.Finally,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the modeling,simulation,and control design of AGTF for control application.展开更多
Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynami...Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.展开更多
A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wh...A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wheels that could be towed. There is an independentelectrical measurement and control system to test the rotational speed of rotors, the gas pressureof the compressor, the exhaust gas temperature, etc. Cooperated with the oil truck and the electricpower supply truck, the turbofan engine could be preserved on the ground and started to the idlingregime. While running, the parameter of the engine could be recorded, disposed and displayed. Inaddition, the facilities were successfully applied to the plateau experiment in order to researchhow the atmosphere pressure affects the start of engines. Some data are given in the paper.展开更多
To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structur...To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.展开更多
基金This study was co-supported by the National Science and Technology Major Project,China(No.J2019-V-0010-0104)Zhejiang Provincial Natural Science Foundation of China(No.LQ23E060007).
文摘As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With the rapid development of advanced high-performance aeroengine,the increasing demand of high-altitude simulation test is driving AGTF to improve its test ability and level of automation and intelligence.The modeling method,simulation tool,and control technology are the key factors to support the improvement of the AGTF control system.The main purpose of this paper is to provide an overview of modeling methods,simulation tools,and control technologies in AGTF control system for future research.First,it reviews the evolution of AGTF in the world,from the early formative stage to integration stage.Then,the mathematical modeling method of AGTF for control application is overviewed.Furthermore,the simulation tools used in the AGTF control system are overviewed from numerical simulation to hardware-in-loop simulation and further to semi-physical simulation.Meanwhile,the control technologies used in the AGTF control system are summarized from single-variable control to multivariable integrated control,and from classical control theory to modern control theory.Finally,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the modeling,simulation,and control design of AGTF for control application.
基金supported in part by the Stable Support Research Project of AECC Sichuan Gas Turbine Establishment,China(No.GJCZ-0013-19)the Open Foundation of State Key Laboratory of Compressor Technology,China(Compressor Technology Laboratory of Anhui Province)(No.SKL-YSJ2020007).
文摘Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.
文摘A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wheels that could be towed. There is an independentelectrical measurement and control system to test the rotational speed of rotors, the gas pressureof the compressor, the exhaust gas temperature, etc. Cooperated with the oil truck and the electricpower supply truck, the turbofan engine could be preserved on the ground and started to the idlingregime. While running, the parameter of the engine could be recorded, disposed and displayed. Inaddition, the facilities were successfully applied to the plateau experiment in order to researchhow the atmosphere pressure affects the start of engines. Some data are given in the paper.
基金funded by China Scholarship Council (CSC)and National Science and Technology Major Project,China(No. 2017-V-0015-0067)。
文摘To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.