Large amounts of used rubber tires are discarded annually. A long time is needed for them to degrade naturally. This poses two major problems: environmental pollution and wastage of valuable rubber. On the other hand,...Large amounts of used rubber tires are discarded annually. A long time is needed for them to degrade naturally. This poses two major problems: environmental pollution and wastage of valuable rubber. On the other hand, with the harm of vibration and noise widely recognized, desires to control them intensify. As an important means of vibration control, viscoelastic damping technology has advanced greatly. The need for cheap and high quality viscoelastic damping materials increases rapidly. This paper made a trial to use ground rubber tire (GRT) recovered from old tires to make damping materials. The GRT is treated specially first. Then it was pressed into slabs and vulcanized. Finally, the product was cut into test samples. An Oberst beam was used to determine the loss factor βand storage modulus E. Results show that the damping materials exhibit good damping α-bility.展开更多
In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic a...In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage.展开更多
In-situ reactive compatibilization of high-density polyethylene (HDPE)/ground tire rubber (GTR) blends by dicumyl peroxide (DCP) and HY-2045 - a kind of thermoplastic phenolic resin without catalyst was inves...In-situ reactive compatibilization of high-density polyethylene (HDPE)/ground tire rubber (GTR) blends by dicumyl peroxide (DCP) and HY-2045 - a kind of thermoplastic phenolic resin without catalyst was investigated by studying the mor-phology, stress and strain behavior, dynamic mechanical properties and crystallization performance of the blends. Scanning e-lectron microscopy (SEM) results show that there are a lot of fibrous materials distributing in the interface, which connects the dispersed phase with the matrix and obtains better interfacial strength for prominent mechanical properties. The addition of compatibilizers results in the decrease of crystallinity of the blends and the disappearance of an obvious yield phenomenon, which was proved by the differential scanning calorimeter (DSC) test and X-ray diffraction (XRD) characterization Although the crystallinity of the blends decreases,the tensile strength and tensile strain of the blends significantly increases, especially for the HDPE/GTR/DCP/HY-2045 blends, which is possibly attributed to the good compatibility of the blends owing to the in-situ interface crosslinking. In addition, it is found that the compatibilizing HDPE/GTR blends shows a higher tan^ peak temperature and a broaden transition peak for GTR phase.展开更多
文摘Large amounts of used rubber tires are discarded annually. A long time is needed for them to degrade naturally. This poses two major problems: environmental pollution and wastage of valuable rubber. On the other hand, with the harm of vibration and noise widely recognized, desires to control them intensify. As an important means of vibration control, viscoelastic damping technology has advanced greatly. The need for cheap and high quality viscoelastic damping materials increases rapidly. This paper made a trial to use ground rubber tire (GRT) recovered from old tires to make damping materials. The GRT is treated specially first. Then it was pressed into slabs and vulcanized. Finally, the product was cut into test samples. An Oberst beam was used to determine the loss factor βand storage modulus E. Results show that the damping materials exhibit good damping α-bility.
文摘In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage.
文摘In-situ reactive compatibilization of high-density polyethylene (HDPE)/ground tire rubber (GTR) blends by dicumyl peroxide (DCP) and HY-2045 - a kind of thermoplastic phenolic resin without catalyst was investigated by studying the mor-phology, stress and strain behavior, dynamic mechanical properties and crystallization performance of the blends. Scanning e-lectron microscopy (SEM) results show that there are a lot of fibrous materials distributing in the interface, which connects the dispersed phase with the matrix and obtains better interfacial strength for prominent mechanical properties. The addition of compatibilizers results in the decrease of crystallinity of the blends and the disappearance of an obvious yield phenomenon, which was proved by the differential scanning calorimeter (DSC) test and X-ray diffraction (XRD) characterization Although the crystallinity of the blends decreases,the tensile strength and tensile strain of the blends significantly increases, especially for the HDPE/GTR/DCP/HY-2045 blends, which is possibly attributed to the good compatibility of the blends owing to the in-situ interface crosslinking. In addition, it is found that the compatibilizing HDPE/GTR blends shows a higher tan^ peak temperature and a broaden transition peak for GTR phase.