This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater i...This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater intrusion management. The impact of saltwater intrusion along coastal regions and its impact on the environment, hydrogeology and groundwater contamination. It suggests potential solutions to mitigate the impact of saltwater intrusion, including effective water management and techniques for managing SWI. The application of A.I (assessment index) serves as a guideline to correctly identify wells with SWI ranging from no intrusion, slight intrusion and strong intrusion. The challenges of saltwater intrusion in Lagos and the salinization of wells were investigated using the hydro-chemical parameters. The study identifies four wells (“AA”, “CMS”, “OBA” and “VIL”) as having high electric conductivities, indicating saline water intrusion, while other wells (“EBM”, “IKJ, and “IKO”) with lower electric conductivities, indicate little or no salt-water intrusion, and “AJ” well shows slight intrusion. The elevation of the wells also played a vital role in the SWI across coastal regions of Lagos. The study recommends continuous monitoring of coastal wells to help sustain and reduce saline intrusion. The findings of the study are important for policymakers, researchers, and practitioners who are interested in addressing the challenges of saltwater intrusion along coastal regions. We assessed the SWI across the eight (8) wells using the Assessment Index to identify wells with SWI. Wells in “CMS” and “VIL” has strong intrusions. A proposed classification system based on specific ion ratios categorizes water quality from good (+) to highly (-) contaminated (refer to Table 4). These findings underscore the need for attention and effective management strategies to address groundwater unsuitability for various purposes.展开更多
Based on various patterns of groundwater and their abundance characters in south Liaodong Peninsula, the distribution, stage, pattern and characters of sea water intrusion in the serious sea water intrusion areas are ...Based on various patterns of groundwater and their abundance characters in south Liaodong Peninsula, the distribution, stage, pattern and characters of sea water intrusion in the serious sea water intrusion areas are analysed. The reasons to cause sea water intrusion are uneven precipitation, limited recharge of surface water, artificial overpumping, lithology and geological structure. It can provide scientific basis for reasonable utilization of limited water resource in line with the local conditions.展开更多
Marine sedimentary strata are widely distributed in the coastal zone of the study area, and are rich in brine resources. The exploitation of underground water resources often first caused the intrusion of salt water i...Marine sedimentary strata are widely distributed in the coastal zone of the study area, and are rich in brine resources. The exploitation of underground water resources often first caused the intrusion of salt water in the marine strata. Based on the analysis of sea-salt water intrusion feature, the sea-salt water intrusion is divided into four stages: The occurrence and development stage(1976–1985), the rapid development stage(1986–1990), the slow development stage(1990–2000) and the stable development stage(2000–2015). Based on the comparative analysis of the relationship between seawater intrusion and influencing factors, this paper presents that the groundwater exploitation and the brine resources mining are the main control factors of sea-salt water intrusion. On this basis, we have established a numerical model of the sea-salt water intrusion. Using this model, we predicted the development trend of the sea-salt water intrusion. The results show that if the current development of groundwater and brine is maintained, the sea-salt water intrusion will gradually withdraw; once development of brine stops, sea-salt water will invade again. This provides the scientific basis for the rational exploitation of groundwater and the prevention of sea-salt water intrusion.展开更多
Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, ...Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, it is important to evaluate the potential effects of this rising in coastal areas, since the saline intrusion on rivers would be intensified, leading to problems related to water quality. In this context, the present work aimed to verify saline intrusion changes along an important river, São Francisco Canal, located in Rio de Janeiro State, Brazil. For this purpose, a hydrodynamic modeling was performed using SisBaHiA, considering different sea levels and tide conditions. According to the results, it was verified the intensification on saline intrusion and higher salinity values due to a sea level rise of 0.5 m. These results show that new licenses for water withdrawals must be carefully analyzed as the fluvial flow plays an important role to contain the saltwater intrusion on the studied river. Accordingly, it is recommended the evaluation of climate change effects in order to choose best strategies to reduce coastal vulnerability, and the use of this theme on environmental licensing and territorial planning, integrating water planning with coastal management.展开更多
Using CFD and ADCP data collected by four research vessels from both sides of the Taiwan Strait in the northeastern area of the forth China Sea in August - September 1994 and incorporating with CTD data collected in t...Using CFD and ADCP data collected by four research vessels from both sides of the Taiwan Strait in the northeastern area of the forth China Sea in August - September 1994 and incorporating with CTD data collected in the same area in March 1992 and some historical hydrologic data, the water features and the intrusion of Kuroshio water into the South China Sea are discussed, which shows that the water mass distribution in the survey period was similar to that in the cruise of late winter and early spring (March 1992), that is, the water structure in the northeast of the sea and in the Northwest Pacific had their own independent features of temperature and salinity. Though the intrusion of Kuroshio water into the sea was found, it was very weak. Therefore there would be no direct Kuroshio branch into the sea in the late summer and early autumn. Even the Kuroshio water intrusion from the Bashi Channel into the Taiwan Strait, its influence was also very weak. Analysis of isopycnic surface and geretrophic current and the Observed ADCP data show that there was a rather strong northward flow in the southeast pat of the survey area which flowed northward along the west coast of Philippines, rounded the northwest corner of Luzon Island and then flowed northeastward. Some kind of mixing with Kuroshio water was shown in the Bashi Channel. The water mass was obviously of high temperature and low salinity in winter and comparatively low temperature and low salinity in summer.展开更多
Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangt...Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangtze)River estuary.By correlative analysis of chlorinity,discharge and tidal level and calculation of two-dimensional chlorinity,distribution of the Changjiang River estuary,the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm.The intensity of salt water intrusion in the future will be far more serious than current trend.展开更多
The palaeochannel evolution in the study region is divided into four stages by such methods as 14C dating. Sea water intrusion through palaeochannels has been studied as a focal point. Palaeochannels are the main pass...The palaeochannel evolution in the study region is divided into four stages by such methods as 14C dating. Sea water intrusion through palaeochannels has been studied as a focal point. Palaeochannels are the main passageways through which the sea water intrudes at a higher speed, through many means and in a changeable dynamic state.展开更多
Sea level rise due to climate change is a contentious issue with profound geographic and economic implications. One region in the USA identified as being particularly susceptible to seal level rise is the Chesapeake B...Sea level rise due to climate change is a contentious issue with profound geographic and economic implications. One region in the USA identified as being particularly susceptible to seal level rise is the Chesapeake Bay region, and it has been estimated that by the end of the century Norfolk, Virginia could experience sea level rise of 0.75 meters to more than 2.1 meters. Water intrusion is a serious problem in much of the Chesapeake Bay region. The question addressed here is whether this water intrusion is the result of climate-induced seal level rise or is being caused by other factors. Our findings indicate that the water intrusion problems in the region are due not to “sea level rise”, but primarily to land subsidence due to groundwater depletion and, to a lesser extent, subsidence from glacial isostatic adjustment. We conclude that water intrusion will thus continue even if sea levels decline. These findings are critical because the water intrusion problems in the Chesapeake Bay—and elsewhere—cannot be successfully solved unless their causes are correctly identified and appropriate remedies are devised. For the Chesapeake Bay region, the required remedy is the reversal of groundwater withdrawal rates, which has been used successfully elsewhere in the USA and other nations to solve water intrusion problems.展开更多
The current research focuses on the detection of sea water intrusion in Rashid area which is located about 75 km east to Alexandria, Egypt. For this purpose, geoelectrical survey was carried out using the Schlumberger...The current research focuses on the detection of sea water intrusion in Rashid area which is located about 75 km east to Alexandria, Egypt. For this purpose, geoelectrical survey was carried out using the Schlumberger Vertical Electric Sounding (VES) to identify freshwater thickness, sea water intrusion and estimate subsurface lithology. Seventeen VES stations were measured with current electrode separation (AB/2) ranging from 1.5 m to 100 m. Then, the VES data was interpreted using 1-D and 2-D inversion schemes of DC resistivity data based on least squares method with smoothness constrains. The inverted resistivity distribution at relatively shallow depth shows an important low resistivity zone that probably reflects salt water alteration zone (northern parts). Depth to the freshwater bearing layer reaches its maximum at the south and decreases towards the north. From quantitative interpretation, invasion of salt water started at depth about 10 m at north in the thickness of freshwater bearing layer ranging from 15 to 25 m, while at depth of about 120 m all the layers were saturated with salt water.展开更多
As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth...As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth’s crust and the human activity, the relative sea level in the Chanaiiang River mouth will rise by about 1. 0 m during the same peried. Based on this figure, the article forecasted the impacts of sea-level rise on the safety coefficient of coastal structures and civil facilities, loss of wetlands, flood hazard as well as water intrusion. The results show that: 1 ) 40% as large as the present engil1eering mass should be added to the coastal structures in order to maintain the safety coefficient; 2 ) a dynamic loss of 60 km2 of wetlands, as much as 15% of the present total area, would be caused; 3) to hinder the increase inflood hazard dy11amic capacity to drain water must increase by at least 34 times as large as the present; 4) to maintain the present navigation conditions, about 100 million yuan (RMB) is needed to reconstruct over 30(X) bridges and 30 sluices;and 5 ) the disastrous salt water intrusion caused by the sea-level rise could be encountered by the increase in water discharge from the Three Gorge Reservoir in the dry season.展开更多
Groundwater resources occur in a multi aquifer system in the alluvial coastal plain near Beihai, China. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge through subter...Groundwater resources occur in a multi aquifer system in the alluvial coastal plain near Beihai, China. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge through subterranean drainage into the sea and through artificial pumping. A quasi three dimensional finite element model has been used to simulate the spatial and temporal distribution of groundwater levels in the aquifers. Various input parameters were considered in the simulation model. A linear optimization model has been developed for groundwater development within the coastal aquifers. The objective function of the model is to maximize the total groundwater pumpage from the confined aquifer. The control of sea water intrusion is examined by the restriction of the water levels at points along the coast and of the pumping rates in coastal management cells. The response matrix used in the optimization model was generated from the simulation model by forecasting drawdown produced by pumping at a unit impulse discharge. Groundwater development can be primarily optimized by the alteration of the pumping rates of the existing wells.展开更多
Indus Deltaic Region(IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many ...Indus Deltaic Region(IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature(SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper(TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93%(260.86 m^2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover(LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus(ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.展开更多
Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the loca...Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the location of the fresh water-salt water interface in a homogeneous, isotropic, and unconfined coastal aquifer can be estimated based on a piezometric head of fresh water at a point in the fresh water zone (from the water table to the interface) vertically lined up with a piezometric head of salt water at a point in the salt water zone (from the interface down). Research shows that the new method is a general relation and that both the Hubbert relation describing the location of the interface and the Ghy- ben--Herzberg relation are special cases of this method. The method requires two piezometric wells to be close to each other and each tapping into a different zone. Measurements of piezometric heads at a well cluster consisting of piezometric wells tapping separately into fresh water and salt water zones near Beihai, China at 5-day intervals for 15 months are used to illustrate the estimation of interface location. The depth of the interface for well H5 ranges from 32 to 72 m below the sea level.展开更多
G?ksu Delta is an important wetland where the G?ksu River reaches the sea in the eastern part of the town of Tasucu-Ice1. The delta is classified as a Wetland of International Importance according to the Ramsar Conven...G?ksu Delta is an important wetland where the G?ksu River reaches the sea in the eastern part of the town of Tasucu-Ice1. The delta is classified as a Wetland of International Importance according to the Ramsar Convention. In the G?ksu Delta area, urban and agricultural expansions have caused an ever-growing need for fresh water. High groundwater pumping rates and overexploitation of the aquifers, leading to seawater mixing in the G?ksu coastal aquifers. The chemical types of groundwater from alluvial aquifer are Ca-Mg-HCO3, but in the region where sea water mixing is occurred it changes and the Na and Cl ions are added to groundwater. The similar occurrence can be observed in the groundwater from the limestone aquifer. The chemical types of groundwater are Ca-HCO3 or Ca-Mg-HCO3 and they change to Ca-Na-Mg-HCO3-Cl in the vicinity of seawater mixing regions. A statistical comparative analysis also shows that some of the samples are affected by sea water mixing. The extent of seawater intrusion is reflected by the distribution of salinity and electrical conductivity as an equiconcentration map.展开更多
This research studies the impact of different types of coarse aggregate on the behavior of geopolymer concrete based on both fly ash (FA) and ground granulated blast furnace slag (GGBFS) in different marine environmen...This research studies the impact of different types of coarse aggregate on the behavior of geopolymer concrete based on both fly ash (FA) and ground granulated blast furnace slag (GGBFS) in different marine environments. Aiming to solve the problems caused by the construction and demolition waste and the depletion of natural aggregates, in the present study coarse recycled aggregates is used to produce new green concrete with a fly ash-slag based geopolymer. By this examination, the research seeks to improve the quality and productivity of concrete used in construction and hydraulic projects. For this research, four mixtures containing different types of coarse aggregate in two different water environments were used. The utilized mixtures contained natural aggregate concrete (NAC) such as basalt and crushed marble. Also, recycled coarse aggregate concrete (RAC), which totally replaced natural aggregate, was presented in this paper such as crushed concrete and crushed ceramic. For this study, in the sieve analysis;specific and unit weights, was recorded. Furthermore, the mechanical properties were determined, using a compressive test that was conducted on the 7th, 28th, 56th and 90th days at different water environments;potable water (PW) and sea water (SW). Durability test was also performed for total absorption measurement. Results indicated that geopolymer concrete exhibits better strength in marine environments than in those of potable water. Results also showed that crushed marble (CMA) exhibits higher compressive strength and durability.展开更多
文摘This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater intrusion management. The impact of saltwater intrusion along coastal regions and its impact on the environment, hydrogeology and groundwater contamination. It suggests potential solutions to mitigate the impact of saltwater intrusion, including effective water management and techniques for managing SWI. The application of A.I (assessment index) serves as a guideline to correctly identify wells with SWI ranging from no intrusion, slight intrusion and strong intrusion. The challenges of saltwater intrusion in Lagos and the salinization of wells were investigated using the hydro-chemical parameters. The study identifies four wells (“AA”, “CMS”, “OBA” and “VIL”) as having high electric conductivities, indicating saline water intrusion, while other wells (“EBM”, “IKJ, and “IKO”) with lower electric conductivities, indicate little or no salt-water intrusion, and “AJ” well shows slight intrusion. The elevation of the wells also played a vital role in the SWI across coastal regions of Lagos. The study recommends continuous monitoring of coastal wells to help sustain and reduce saline intrusion. The findings of the study are important for policymakers, researchers, and practitioners who are interested in addressing the challenges of saltwater intrusion along coastal regions. We assessed the SWI across the eight (8) wells using the Assessment Index to identify wells with SWI. Wells in “CMS” and “VIL” has strong intrusions. A proposed classification system based on specific ion ratios categorizes water quality from good (+) to highly (-) contaminated (refer to Table 4). These findings underscore the need for attention and effective management strategies to address groundwater unsuitability for various purposes.
文摘Based on various patterns of groundwater and their abundance characters in south Liaodong Peninsula, the distribution, stage, pattern and characters of sea water intrusion in the serious sea water intrusion areas are analysed. The reasons to cause sea water intrusion are uneven precipitation, limited recharge of surface water, artificial overpumping, lithology and geological structure. It can provide scientific basis for reasonable utilization of limited water resource in line with the local conditions.
基金supported by Geological prospecting project in Shandong Province([2011]14)
文摘Marine sedimentary strata are widely distributed in the coastal zone of the study area, and are rich in brine resources. The exploitation of underground water resources often first caused the intrusion of salt water in the marine strata. Based on the analysis of sea-salt water intrusion feature, the sea-salt water intrusion is divided into four stages: The occurrence and development stage(1976–1985), the rapid development stage(1986–1990), the slow development stage(1990–2000) and the stable development stage(2000–2015). Based on the comparative analysis of the relationship between seawater intrusion and influencing factors, this paper presents that the groundwater exploitation and the brine resources mining are the main control factors of sea-salt water intrusion. On this basis, we have established a numerical model of the sea-salt water intrusion. Using this model, we predicted the development trend of the sea-salt water intrusion. The results show that if the current development of groundwater and brine is maintained, the sea-salt water intrusion will gradually withdraw; once development of brine stops, sea-salt water will invade again. This provides the scientific basis for the rational exploitation of groundwater and the prevention of sea-salt water intrusion.
文摘Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, it is important to evaluate the potential effects of this rising in coastal areas, since the saline intrusion on rivers would be intensified, leading to problems related to water quality. In this context, the present work aimed to verify saline intrusion changes along an important river, São Francisco Canal, located in Rio de Janeiro State, Brazil. For this purpose, a hydrodynamic modeling was performed using SisBaHiA, considering different sea levels and tide conditions. According to the results, it was verified the intensification on saline intrusion and higher salinity values due to a sea level rise of 0.5 m. These results show that new licenses for water withdrawals must be carefully analyzed as the fluvial flow plays an important role to contain the saltwater intrusion on the studied river. Accordingly, it is recommended the evaluation of climate change effects in order to choose best strategies to reduce coastal vulnerability, and the use of this theme on environmental licensing and territorial planning, integrating water planning with coastal management.
基金This project was supported by the National Key Programme for Developing Basic Sciences-Research on the China Seashore Circulatio
文摘Using CFD and ADCP data collected by four research vessels from both sides of the Taiwan Strait in the northeastern area of the forth China Sea in August - September 1994 and incorporating with CTD data collected in the same area in March 1992 and some historical hydrologic data, the water features and the intrusion of Kuroshio water into the South China Sea are discussed, which shows that the water mass distribution in the survey period was similar to that in the cruise of late winter and early spring (March 1992), that is, the water structure in the northeast of the sea and in the Northwest Pacific had their own independent features of temperature and salinity. Though the intrusion of Kuroshio water into the sea was found, it was very weak. Therefore there would be no direct Kuroshio branch into the sea in the late summer and early autumn. Even the Kuroshio water intrusion from the Bashi Channel into the Taiwan Strait, its influence was also very weak. Analysis of isopycnic surface and geretrophic current and the Observed ADCP data show that there was a rather strong northward flow in the southeast pat of the survey area which flowed northward along the west coast of Philippines, rounded the northwest corner of Luzon Island and then flowed northeastward. Some kind of mixing with Kuroshio water was shown in the Bashi Channel. The water mass was obviously of high temperature and low salinity in winter and comparatively low temperature and low salinity in summer.
基金Project Supported by the National Science Foundation of China and the Chinese Academy of Sci-ences
文摘Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangtze)River estuary.By correlative analysis of chlorinity,discharge and tidal level and calculation of two-dimensional chlorinity,distribution of the Changjiang River estuary,the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm.The intensity of salt water intrusion in the future will be far more serious than current trend.
基金This research was supported by the Natural Science Foundation of Shandong Province of China under contract No.Y2000E03.
文摘The palaeochannel evolution in the study region is divided into four stages by such methods as 14C dating. Sea water intrusion through palaeochannels has been studied as a focal point. Palaeochannels are the main passageways through which the sea water intrudes at a higher speed, through many means and in a changeable dynamic state.
文摘Sea level rise due to climate change is a contentious issue with profound geographic and economic implications. One region in the USA identified as being particularly susceptible to seal level rise is the Chesapeake Bay region, and it has been estimated that by the end of the century Norfolk, Virginia could experience sea level rise of 0.75 meters to more than 2.1 meters. Water intrusion is a serious problem in much of the Chesapeake Bay region. The question addressed here is whether this water intrusion is the result of climate-induced seal level rise or is being caused by other factors. Our findings indicate that the water intrusion problems in the region are due not to “sea level rise”, but primarily to land subsidence due to groundwater depletion and, to a lesser extent, subsidence from glacial isostatic adjustment. We conclude that water intrusion will thus continue even if sea levels decline. These findings are critical because the water intrusion problems in the Chesapeake Bay—and elsewhere—cannot be successfully solved unless their causes are correctly identified and appropriate remedies are devised. For the Chesapeake Bay region, the required remedy is the reversal of groundwater withdrawal rates, which has been used successfully elsewhere in the USA and other nations to solve water intrusion problems.
文摘The current research focuses on the detection of sea water intrusion in Rashid area which is located about 75 km east to Alexandria, Egypt. For this purpose, geoelectrical survey was carried out using the Schlumberger Vertical Electric Sounding (VES) to identify freshwater thickness, sea water intrusion and estimate subsurface lithology. Seventeen VES stations were measured with current electrode separation (AB/2) ranging from 1.5 m to 100 m. Then, the VES data was interpreted using 1-D and 2-D inversion schemes of DC resistivity data based on least squares method with smoothness constrains. The inverted resistivity distribution at relatively shallow depth shows an important low resistivity zone that probably reflects salt water alteration zone (northern parts). Depth to the freshwater bearing layer reaches its maximum at the south and decreases towards the north. From quantitative interpretation, invasion of salt water started at depth about 10 m at north in the thickness of freshwater bearing layer ranging from 15 to 25 m, while at depth of about 120 m all the layers were saturated with salt water.
文摘As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth’s crust and the human activity, the relative sea level in the Chanaiiang River mouth will rise by about 1. 0 m during the same peried. Based on this figure, the article forecasted the impacts of sea-level rise on the safety coefficient of coastal structures and civil facilities, loss of wetlands, flood hazard as well as water intrusion. The results show that: 1 ) 40% as large as the present engil1eering mass should be added to the coastal structures in order to maintain the safety coefficient; 2 ) a dynamic loss of 60 km2 of wetlands, as much as 15% of the present total area, would be caused; 3) to hinder the increase inflood hazard dy11amic capacity to drain water must increase by at least 34 times as large as the present; 4) to maintain the present navigation conditions, about 100 million yuan (RMB) is needed to reconstruct over 30(X) bridges and 30 sluices;and 5 ) the disastrous salt water intrusion caused by the sea-level rise could be encountered by the increase in water discharge from the Three Gorge Reservoir in the dry season.
基金This paper is partially supported by the Fund for Young Geologists in the Ministry of Geology and Mineral Resources of China(
文摘Groundwater resources occur in a multi aquifer system in the alluvial coastal plain near Beihai, China. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge through subterranean drainage into the sea and through artificial pumping. A quasi three dimensional finite element model has been used to simulate the spatial and temporal distribution of groundwater levels in the aquifers. Various input parameters were considered in the simulation model. A linear optimization model has been developed for groundwater development within the coastal aquifers. The objective function of the model is to maximize the total groundwater pumpage from the confined aquifer. The control of sea water intrusion is examined by the restriction of the water levels at points along the coast and of the pumping rates in coastal management cells. The response matrix used in the optimization model was generated from the simulation model by forecasting drawdown produced by pumping at a unit impulse discharge. Groundwater development can be primarily optimized by the alteration of the pumping rates of the existing wells.
文摘Indus Deltaic Region(IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature(SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper(TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93%(260.86 m^2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover(LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus(ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.
基金supported by the Fund for the Special Research of Doctorate Subjects of the Ministry of Education of China (No.20070491522)
文摘Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the location of the fresh water-salt water interface in a homogeneous, isotropic, and unconfined coastal aquifer can be estimated based on a piezometric head of fresh water at a point in the fresh water zone (from the water table to the interface) vertically lined up with a piezometric head of salt water at a point in the salt water zone (from the interface down). Research shows that the new method is a general relation and that both the Hubbert relation describing the location of the interface and the Ghy- ben--Herzberg relation are special cases of this method. The method requires two piezometric wells to be close to each other and each tapping into a different zone. Measurements of piezometric heads at a well cluster consisting of piezometric wells tapping separately into fresh water and salt water zones near Beihai, China at 5-day intervals for 15 months are used to illustrate the estimation of interface location. The depth of the interface for well H5 ranges from 32 to 72 m below the sea level.
基金the Scientific and Technological Research Council of Turkey,(TUBITAK)Ankara,for financing this project(105Y285).
文摘G?ksu Delta is an important wetland where the G?ksu River reaches the sea in the eastern part of the town of Tasucu-Ice1. The delta is classified as a Wetland of International Importance according to the Ramsar Convention. In the G?ksu Delta area, urban and agricultural expansions have caused an ever-growing need for fresh water. High groundwater pumping rates and overexploitation of the aquifers, leading to seawater mixing in the G?ksu coastal aquifers. The chemical types of groundwater from alluvial aquifer are Ca-Mg-HCO3, but in the region where sea water mixing is occurred it changes and the Na and Cl ions are added to groundwater. The similar occurrence can be observed in the groundwater from the limestone aquifer. The chemical types of groundwater are Ca-HCO3 or Ca-Mg-HCO3 and they change to Ca-Na-Mg-HCO3-Cl in the vicinity of seawater mixing regions. A statistical comparative analysis also shows that some of the samples are affected by sea water mixing. The extent of seawater intrusion is reflected by the distribution of salinity and electrical conductivity as an equiconcentration map.
文摘This research studies the impact of different types of coarse aggregate on the behavior of geopolymer concrete based on both fly ash (FA) and ground granulated blast furnace slag (GGBFS) in different marine environments. Aiming to solve the problems caused by the construction and demolition waste and the depletion of natural aggregates, in the present study coarse recycled aggregates is used to produce new green concrete with a fly ash-slag based geopolymer. By this examination, the research seeks to improve the quality and productivity of concrete used in construction and hydraulic projects. For this research, four mixtures containing different types of coarse aggregate in two different water environments were used. The utilized mixtures contained natural aggregate concrete (NAC) such as basalt and crushed marble. Also, recycled coarse aggregate concrete (RAC), which totally replaced natural aggregate, was presented in this paper such as crushed concrete and crushed ceramic. For this study, in the sieve analysis;specific and unit weights, was recorded. Furthermore, the mechanical properties were determined, using a compressive test that was conducted on the 7th, 28th, 56th and 90th days at different water environments;potable water (PW) and sea water (SW). Durability test was also performed for total absorption measurement. Results indicated that geopolymer concrete exhibits better strength in marine environments than in those of potable water. Results also showed that crushed marble (CMA) exhibits higher compressive strength and durability.