期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Groundwater Level Predictions Using Artificial Neural Networks 被引量:2
1
作者 毛晓敏 尚松浩 刘翔 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第6期574-579,共6页
The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of ... The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future. 展开更多
关键词 groundwater level prediction artificial neural networks back-propagation algorithm auto-correlation analysis
原文传递
Inclusive Multiple Models(IMM)for predicting groundwater levels and treating heterogeneity 被引量:1
2
作者 Rahman Khatibi Ata Allah Nadiri 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期713-724,共12页
An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple ... An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes. 展开更多
关键词 Artificial intelligence Exclusionary multiple modelling(EMM) groundwater level prediction Inclusive multiple modelling(IMM) Model management practices
下载PDF
Combining random forest and graph wavenet for spatial-temporal data prediction 被引量:1
3
作者 Chong Chen Yanbo Xu +2 位作者 Jixuan Zhao Lulu Chen Yaru Xue 《Intelligent and Converged Networks》 EI 2022年第4期364-377,共14页
The prosperity of deep learning has revolutionized many machine learning tasks(such as image recognition,natural language processing,etc.).With the widespread use of autonomous sensor networks,the Internet of Things,a... The prosperity of deep learning has revolutionized many machine learning tasks(such as image recognition,natural language processing,etc.).With the widespread use of autonomous sensor networks,the Internet of Things,and crowd sourcing to monitor real-world processes,the volume,diversity,and veracity of spatial-temporal data are expanding rapidly.However,traditional methods have their limitation in coping with spatial-temporal dependencies,which either incorporate too much data from weakly connected locations or ignore the relationships between those interrelated but geographically separated regions.In this paper,a novel deep learning model(termed RF-GWN)is proposed by combining Random Forest(RF)and Graph WaveNet(GWN).In RF-GWN,a new adaptive weight matrix is formulated by combining Variable Importance Measure(VIM)of RF with the long time series feature extraction ability of GWN in order to capture potential spatial dependencies and extract long-term dependencies from the input data.Furthermore,two experiments are conducted on two real-world datasets with the purpose of predicting traffic flow and groundwater level.Baseline models are implemented by Diffusion Convolutional Recurrent Neural Network(DCRNN),Spatial-Temporal GCN(ST-GCN),and GWN to verify the effectiveness of the RF-GWN.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Mean Absolute Percentage Error(MAPE)are selected as performance criteria.The results show that the proposed model can better capture the spatial-temporal relationships,the prediction performance on the METR-LA dataset is slightly improved,and the index of the prediction task on the PEMS-BAY dataset is significantly improved.These improvements are extended to the groundwater dataset,which can effectively improve the prediction accuracy.Thus,the applicability and effectiveness of the proposed model RF-GWN in both traffic flow and groundwater level prediction are demonstrated. 展开更多
关键词 spatial-temporal data random forest graph wavenet groundwater level prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部