Groundwater vulnerability assessment is a crucial step in the efficient management of groundwater resources,especially in areas with intensive anthropogenic activities and groundwater pollution.In the present study,th...Groundwater vulnerability assessment is a crucial step in the efficient management of groundwater resources,especially in areas with intensive anthropogenic activities and groundwater pollution.In the present study,the DRASTIC method was applied using Geographic Information System(GIS)to delineate groundwater vulnerability zones in the Erbil Dumpsite area,Central Erbil Basin,North Iraq.Results showed that the area was classified into four vulnerability classes:Very low(16.97%),low(27.67%),moderate(36.55%)and high(18.81%).The southern,south-eastern and northern parts of the study area exhibited the highest vulnerability potential,while the central-northern,northern and north-western regions displayed the lowest vulnerability potential.Moreover,results of the single-parameter sensitivity analysis indicated that amongst the seven DRASTIC parameters,the unsaturated zone and the aquifer media were the most influencing parameters.In conclustion,the correlation of 25 nitrate concentration values with the final vulnerability map,assessed using the Pearson correlation coefficient,yielded a satisfactory result of R=0.72.展开更多
To assess the groundwater vulnerability due to leaching of chemicals, the groundwater system in the unsaturated zone is characterized by conceptual models that are further extended and refined with more detailed mathe...To assess the groundwater vulnerability due to leaching of chemicals, the groundwater system in the unsaturated zone is characterized by conceptual models that are further extended and refined with more detailed mathematical models to understand the governing physical processes in detail. However, due to lack of data and uncertainty level, an intermediate transition through index based models is researched. The attenuation factor (AF) approach, which works under the assumption that the chemicals degrade following a first-order kinetics and determines the fraction of the chemicals that goes to groundwater table, is one of the index based models that has been widely used due to its simplicity. Therefore, the objective of this paper is to review the research works done using the AF approach, to outline the future research needs. Furthermore, the mathematical implementation of the AF approach and the associated uncertainty levels is explained through an example and MATLAB source code.展开更多
文摘Groundwater vulnerability assessment is a crucial step in the efficient management of groundwater resources,especially in areas with intensive anthropogenic activities and groundwater pollution.In the present study,the DRASTIC method was applied using Geographic Information System(GIS)to delineate groundwater vulnerability zones in the Erbil Dumpsite area,Central Erbil Basin,North Iraq.Results showed that the area was classified into four vulnerability classes:Very low(16.97%),low(27.67%),moderate(36.55%)and high(18.81%).The southern,south-eastern and northern parts of the study area exhibited the highest vulnerability potential,while the central-northern,northern and north-western regions displayed the lowest vulnerability potential.Moreover,results of the single-parameter sensitivity analysis indicated that amongst the seven DRASTIC parameters,the unsaturated zone and the aquifer media were the most influencing parameters.In conclustion,the correlation of 25 nitrate concentration values with the final vulnerability map,assessed using the Pearson correlation coefficient,yielded a satisfactory result of R=0.72.
文摘To assess the groundwater vulnerability due to leaching of chemicals, the groundwater system in the unsaturated zone is characterized by conceptual models that are further extended and refined with more detailed mathematical models to understand the governing physical processes in detail. However, due to lack of data and uncertainty level, an intermediate transition through index based models is researched. The attenuation factor (AF) approach, which works under the assumption that the chemicals degrade following a first-order kinetics and determines the fraction of the chemicals that goes to groundwater table, is one of the index based models that has been widely used due to its simplicity. Therefore, the objective of this paper is to review the research works done using the AF approach, to outline the future research needs. Furthermore, the mathematical implementation of the AF approach and the associated uncertainty levels is explained through an example and MATLAB source code.